1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
HACTEHA [7]
2 years ago
5

A 29.0 kg beam is attached to a wall with a hi.nge while its far end is supported by a cable such that the beam is horizontal.

Physics
1 answer:
Elanso [62]2 years ago
6 0

The tension in the cable is 169.43 N and the vertical component of the force exerted by the hi.nge on the beam is 114.77 N.

<h3>Tension in the cable</h3>

Apply the principle of moment and calculate the tension in the cable;

Clockwise torque = TL sinθ

Anticlockwise torque = ¹/₂WL

TL sinθ  =  ¹/₂WL

T sinθ  =  ¹/₂W

T = (W)/(2 sinθ)

T = (29 x 9.8)/(2 x sin57)

T = 169.43 N

<h3>Vertical component of the force</h3>

T + F = W

F = W - T

F = (9.8 x 29) - 169.43

F = 114.77 N

Thus, the tension in the cable is 169.43 N and the vertical component of the force exerted by the hi.nge on the beam is 114.77 N.

Learn more about tension here: brainly.com/question/24994188

#SPJ1

You might be interested in
Would the frequency of the angular simple harmonic motion (SHM) of the balance wheel increase or decrease if the dimensions of t
storchak [24]

Answer:

Yes the frequency of the angular simple harmonic motion (SHM) of the balance wheel increases three times if the dimensions of the balance wheel reduced to one-third of original dimensions.

Explanation:

Considering the complete question attached in figure below.

Time period for balance wheel is:

T=2\pi\sqrt{\frac{I}{K}}

I=mR^{2}

m = mass of balance wheel

R = radius of balance wheel.

Angular frequency is related to Time period as:

\omega=\frac{2\pi}{T}\\\omega=\sqrt{\frac{K}{I}} \\\omega=\sqrt{\frac{K}{mR^{2}}

As dimensions of new balance wheel are one-third of their original values

R_{new}=\frac{R}{3}

\omega_{new}=\sqrt{\frac{K}{mR_{new}^{2}}}\\\\\omega_{new}=\sqrt{\frac{K}{m(\frac{R}{3})^{2}}}\\\\\omega_{new}={3}\sqrt{\frac{K}{mR^{2}}}\\\\\omega_{new}={3}\omega

5 0
3 years ago
A red laser from a physics lab is marked as producing 632.8 nm light. When light from this laser falls on two closely spaced sli
goblinko [34]

Given Information:  

Wavelength of the red laser = λr = 632.8 nm

Distance between bright fringes due to red laser = yr = 5 mm

Distance between bright fringes due to laser pointer = yp = 5.14 mm

Required Information:  

Wavelength of the laser pointer = λp = ?

Answer:

Wavelength of the laser pointer = λp = ?

Explanation:

The wavelength of the monochromatic light can be found using young's double slits formula,

y = Dλ/d  

y/λ = D/d

Where

λ is the wavelength

y is the distance between bright fringes.

d is the double slit separation distance

D is the distance from the slits to the screen

For the red laser,

yr/λr = D/d

For the laser pointer,

yp/λp = D/d

Equating both equations yields,

yr/λr = yp/λp

Re-arrange for λp

λp = yp*λr/yr

λp =  (5*632.8)/5.14

λp = 615.56 nm

Therefore, the wavelength of the small laser pointer is 615.56 nm.

3 0
3 years ago
A 20 kg block rests on a rough horizontal table. A rope is attatched to the block and is pulled with a force of 80 N to the left
Pani-rosa [81]

Given :

Mass of block , M = 20 kg .

Force applied , F = 80 N .

Acceleration of block , a=2.5\ m/s^2 .

To Find :

The coefficient is Kinetic force friction between the block and the table .

Solution :

We know , Force equation on block is given by :

F_{net }=F-\mu_k mg \\\\ma = F-\mu_k mg \\\\20\times 2.5 = 80 -\mu_k \times 20 \times 10\\\\\mu_k\times 200=30\\\\\mu_k=\dfrac{30}{200}\\\\\ mu_k=0.15

Therefore , coefficient is Kinetic force friction between the block and the table is 0.15 .

Hence , this is the required solution .

5 0
4 years ago
During a compaction test in the lab a cylindrical mold with a diameter of 4in and a height of 4.58in was filled. The compacted s
Ray Of Light [21]

Answer:

part a : <em>The dry unit weight is 0.0616  </em>lb/in^3<em />

part b : <em>The void ratio is 0.77</em>

part c :  <em>Degree of Saturation is 0.43</em>

part d : <em>Additional water (in lb) needed to achieve 100% saturation in the soil sample is 0.72 lb</em>

Explanation:

Part a

Dry Unit Weight

The dry unit weight is given as

\gamma_{d}=\frac{\gamma}{1+\frac{w}{100}}

Here

  • \gamma_d is the dry unit weight which is to be calculated
  • γ is the bulk unit weight given as

                                              \gamma =weight/Volume \\\gamma= 4 lb / \pi r^2 h\\\gamma= 4 lb / \pi (4/2)^2 \times 4.58\\\gamma= 4 lb / 57.55\\\gamma= 0.069 lb/in^3

  • w is the moisture content in percentage, given as 12%

Substituting values

                                              \gamma_{d}=\frac{\gamma}{1+\frac{w}{100}}\\\gamma_{d}=\frac{0.069}{1+\frac{12}{100}} \\\gamma_{d}=\frac{0.069}{1.12}\\\gamma_{d}=0.0616 lb/in^3

<em>The dry unit weight is 0.0616  </em>lb/in^3<em />

Part b

Void Ratio

The void ratio is given as

                                                e=\frac{G_s \gamma_w}{\gamma_d} -1

Here

  • e is the void ratio which is to be calculated
  • \gamma_d is the dry unit weight which is calculated in part a
  • \gamma_w is the water unit weight which is 62.4 lb/ft^3 or 0.04 lb/in^3
  • G is the specific gravity which is given as 2.72

Substituting values

                                              e=\frac{G_s \gamma_w}{\gamma_d} -1\\e=\frac{2.72 \times 0.04}{0.0616} -1\\e=1.766 -1\\e=0.766

<em>The void ratio is 0.77</em>

Part c

Degree of Saturation

Degree of Saturation is given as

S=\frac{G w}{e}

Here

  • e is the void ratio which is calculated in part b
  • G is the specific gravity which is given as 2.72
  • w is the moisture content in percentage, given as 12% or 0.12 in fraction

Substituting values

                                      S=\frac{G w}{e}\\S=\frac{2.72 \times .12}{0.766}\\S=0.4261

<em>Degree of Saturation is 0.43</em>

Part d

Additional Water needed

For this firstly the zero air unit weight with 100% Saturation is calculated and the value is further manipulated accordingly. Zero air unit weight is given as

\gamma_{zav}=\frac{\gamma_w}{w+\frac{1}{G}}

Here

  • \gamma_{zav} is  the zero air unit weight which is to be calculated
  • \gamma_w is the water unit weight which is 62.4 lb/ft^3 or 0.04 lb/in^3
  • G is the specific gravity which is given as 2.72
  • w is the moisture content in percentage, given as 12% or 0.12 in fraction

                                      \gamma_{zav}=\frac{\gamma_w}{w+\frac{1}{G}}\\\gamma_{zav}=\frac{0.04}{0.12+\frac{1}{2.72}}\\\gamma_{zav}=\frac{0.04}{0.4876}\\\gamma_{zav}=0.08202 lb/in^3\\

Now as the volume is known, the the overall weight is given as

weight=\gamma_{zav} \times V\\weight=0.08202 \times 57.55\\weight=4.72 lb

As weight of initial bulk is already given as 4 lb so additional water required is 0.72 lb.

4 0
3 years ago
According to the law of conservation of mass, what is the mass of water
DENIUS [597]

Answer:

<em>according to the conservation of mass,</em>

<em>according to the conservation of mass,the mass of the water is 36.04g</em><em>r</em><em>a</em><em>m</em><em>s</em><em> </em>

Explanation:

Hope It Help you

3 0
3 years ago
Read 2 more answers
Other questions:
  • The microwaves in a microwave oven are produced in a special tube called a magnetron. The electrons orbit in a magnetic field of
    15·1 answer
  • Two charged particles are placed 2.0 meters apart. The first charge is +2.0 E-6 C, and the second charge is +4.0 E-6 C. What is
    8·1 answer
  • The particles in an object move in (many/ two directions)
    13·1 answer
  • Can someone help please I will give brainliest
    12·1 answer
  • A pulley lifts a 72-N load with a force of 24-N. The input distance is 2m and the output distance is 0.5m. What is the efficienc
    11·1 answer
  • A 40kg kid riding their bike down the street at 5m/s reaches the edge of a hill and coast down to the bottom. If the hill was 10
    7·1 answer
  • A ferrari has a mass of 1485kg.what is it's weight on Earth ​
    11·2 answers
  • The Ancient Roman economy did not make use of
    8·2 answers
  • 11. Distinguish between solid and liquid states of matter in terms of intermolecular forces​
    12·1 answer
  • Please help!
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!