Answer: a) P = 120kw
b) P = 800kw
Explanation: Please find the attached file for the solution
The answer for the following problem is mentioned below.
- <u><em>Therefore the time period is 0.02 seconds.</em></u>
Explanation:
Frequency:
The number of waves that pass a fixed place in a given amount of time. (or)
The number of waves that pas by per second.
The SI unit of the frequency is Hertz(Hz).
Time period:
The time taken for one complete cycle of vibration to pass a given point.
The SI unit of time period is seconds. (s)
Given:
Frequency (f) = 39.5 Hz
To calculate:
Time period (T)
We know;
According to the problem;
From the problem;
<u>f = </u>
<u></u>
Where;
f represents the frequency
T represents the time period
f = 
f = 0.02 seconds
<u><em>Therefore the time period is 0.02 seconds.</em></u>
Along the flow direction, the boundary layer's thickness varies. For ReT values between 260 and 780, the boundary layer thickness—defined as the depth at which the normalized concentration has a value of 1/e—ranges between 800 and 250 m.
<h3>What is the Boundary layer?</h3>
- A boundary layer is the thin layer of fluid that forms immediately around a bounded surface in physics and fluid mechanics as a result of the fluid flowing along the surface.
- A no-slip boundary condition is created as a result of the fluid and wall interaction (zero velocity at the wall).
- After that, the flow velocity above the surface steadily rises until it reaches the bulk flow velocity again.
- The term "velocity boundary layer" refers to the thin layer of fluid whose velocity has not yet recovered to that of the main flow.
<h3>What purpose does a boundary layer serve?</h3>
- Because it is on the fluid's boundary, engineers refer to this layer as the boundary layer.
- Many aerodynamics issues, such as wing stall, skin friction drag on an object, and the heat transfer that takes place in high-speed flight, depend heavily on the specifics of the flow within the boundary layer.
Learn more about Boundary layer here:
brainly.com/question/12974964
#SPJ4
Sound is an example of a mechanical wave. Mechanical waves are the kinds of waves that cannot be propagated without a medium. As such, these waves cannot travel through a vacuum, just like how sound cannot travel through space, since space is a vacuum.
Answer
given,
heat added to the gas,Q = 3300 kcal
initial volume, V₁ = 13.7 m³
final volume, V₂ = 19.7 m³
atmospheric pressure, P = 1.013 x 10⁵ Pa
a) Work done by the gas
W = P Δ V
W = 1.013 x 10⁵ x (19.7 - 13.7)
W = 6.029 x 10⁵ J
b) internal energy of the gas = ?
now,
change in internal energy
Δ U = Q - W
Q = 3300 x 10³ cal
Q = 3300 x 10³ x 4.186 J
Q = 1.38 x 10⁷ J
now,
Δ U = 1.38 x 10⁷ - 6.029 x 10⁵
Δ U = 1.32 x 10⁷ J