I would rather be hit by the deflated ball because it wouldn't hurt as bad because it wouldn't have a lot of weight to hurt me in anyway
One of the brightest nebulae in the night sky, the Orion Nebula may be seen with the unaided eye. The Trapezium is a young open cluster of four main stars in this magnitude 4 interstellar cloud of ionized atomic hydrogen.
<h3>What is the source of the Orion Nebula's crimson glow?</h3>
- The hydrogen gas in the Orion Nebula, which is powered by radiation from young stars, gives off a crimson tint. The nebula's blue-violet regions are reflecting radiation from bright, blue-white O-type stars while the red areas are emitting light.
- The Orion Nebula is one of many massive clouds of gas and dust in our Milky Way galaxy, say contemporary astronomers, and is one of the largest. It is approximately 1,300 light years away from Earth. This enormous hazy cocoon, which measures approximately 30 to 40 light-years in diameter, is generating potentially a thousand stars.
To learn more about Orion nebula refer to:
brainly.com/question/15575332
#SPJ4
The concept required to solve this problem is the optical relationship that exists between the apparent depth and actual or actual depth. This is mathematically expressed under the equations.

Where,
Depth of glass
Refraction index of water
Refraction index of glass
Refraction index of air
Depth of water
I enclose a diagram for a better understanding of the problem, in this way we can determine that the apparent depth in the water of the logo would be subject to



Therefore the distance below the upper surface of the water that appears to be the logo is 4.041cm
For a merry go round with a radius of R=1.8 m and moment of inertia I=184 kg-m^2 is spinning with an initial angular speed of w=1.48 rad/s is mathematically given as
F= 618.9 N
<h3>What is the centripetal
force?</h3>
Generally, the equation for the angular speed is mathematically given as
w = v/R
Therefore
w= 4.7/1.8
w= 2.611 rad/s
Where total momentum
Tm= 642.96 + 272.32
Tm= 915.28
and total inertia
Ti= 184 + 246.24
Ti= 430.24
In conclusion, centripetal force
F= mrw^2
F = m*R*w2^2
F = 76*1.8*2.127^2
F= 618.9 N
Read more about mass
brainly.com/question/15959704
CQ
Flag
a merry go round with a radius of R=1.8 m and moment of inertia I=184 kg-m^2 is spinning with an initial angular speed of w=1.48 rad/s in the counter clockwise direction when viewed from above a person with mass m=76 kg and velocity v=4.7 m/s runs on a path tangent to the merry go round once at the merry go round the person jumps on and holds on to the rim of the merry go round angular speed of the merry go round after the person jumps on 2.127 rad/s Once the merry go round travels at this new angular speed with what force does the person need to hold on?