You are measuring an Intensive property
<u>Answer:</u> The mass defect for the formation of phosphorus-31 is 0.27399
<u>Explanation:</u>
Mass defect is defined as the difference in the mass of an isotope and its mass number.
The equation used to calculate mass defect follows:
![\Delta m=[(n_p\times m_p)+(n_n\times m_n)]-M](https://tex.z-dn.net/?f=%5CDelta%20m%3D%5B%28n_p%5Ctimes%20m_p%29%2B%28n_n%5Ctimes%20m_n%29%5D-M)
where,
= number of protons
= mass of one proton
= number of neutrons
= mass of one neutron
M = mass number of element
We are given:
An isotope of phosphorus which is 
Number of protons = atomic number = 15
Number of neutrons = Mass number - atomic number = 31 - 15 = 16
Mass of proton = 1.00728 amu
Mass of neutron = 1.00866 amu
Mass number of phosphorus = 30.973765 amu
Putting values in above equation, we get:
![\Delta m=[(15\times 1.00728)+(16\times 1.00866)]-30.973765\\\\\Delta m=0.27399](https://tex.z-dn.net/?f=%5CDelta%20m%3D%5B%2815%5Ctimes%201.00728%29%2B%2816%5Ctimes%201.00866%29%5D-30.973765%5C%5C%5C%5C%5CDelta%20m%3D0.27399)
Hence, the mass defect for the formation of phosphorus-31 is 0.27399
Answer:
Mg S2 O3
Explanation:
.691 g of Mg is .284 mole
1.84 g of S is .5739 mole
1.365 g of O is .8531 mole you can see the ratio is ~ 1 :2 :3
Mg S2 O3
Answer:
emf generated by cell is 2.32 V
Explanation:
Oxidation: 
Reduction: 
---------------------------------------------------------------------------------
Overall: 
Nernst equation for this cell reaction at
-
![E_{cell}=E_{cell}^{0}-\frac{0.059}{n}log{[Al^{3+}]^{2}[I^{-}]^{6}}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE_%7Bcell%7D%5E%7B0%7D-%5Cfrac%7B0.059%7D%7Bn%7Dlog%7B%5BAl%5E%7B3%2B%7D%5D%5E%7B2%7D%5BI%5E%7B-%7D%5D%5E%7B6%7D%7D)
where n is number of electrons exchanged during cell reaction,
is standard cell emf ,
is cell emf ,
is concentration of
and
is concentration of 
Plug in all the given values in the above equation -
![E_{cell}=2.20-\frac{0.059}{6}log[(4.5\times 10^{-3})^{2}\times (0.15)^{6}]V](https://tex.z-dn.net/?f=E_%7Bcell%7D%3D2.20-%5Cfrac%7B0.059%7D%7B6%7Dlog%5B%284.5%5Ctimes%2010%5E%7B-3%7D%29%5E%7B2%7D%5Ctimes%20%280.15%29%5E%7B6%7D%5DV)
So, 
Answer:
The Barium flame is green because it is a difficult flame to excite, therefore for it to trigger a flame it is necessary that it be too excited for it to occur.
The reddish color of calcium is due to its high volatility and it is sometimes very difficult to differentiate it from strontium.the compression of these elements is due to being able to make them work during combustion
Explanation:
The flame test is a widely used qualitative analysis method to identify the presence of a certain chemical element in a sample. To carry it out you must have a gas burner. Usually a Bunsen burner, since the temperature of the flame is high enough to carry out the experience (a wick burner with an alcohol tank is not useful). The flame temperature of the Bunsen burner must first be adjusted until it is no longer yellowish and has a bluish hue to the body of the flame and a colorless envelope. Then the tip of a clean platinum or nichrome rod (an alloy of nickel and chromium), or failing that of glass, is impregnated with a small amount of the substance to be analyzed and, subsequently, the rod is introduced into the flame, trying to locate the tip in the least colored part of the flame.
The electrons in these will jump to higher levels from the lower levels and immediately (the time that an electron can be in higher levels is of the order of nanoseconds), they will emit energy in all directions in the form of electromagnetic radiation (light) of frequencies characteristics. This is what is called an atomic emission spectrum.
At a macroscopic level, it is observed that the sample, when heated in the flame, will provide a characteristic color to it. For example, if the tip of a rod is impregnated with a drop of Ca2 + solution (the previous notation indicates that it is the calcium ion, that is, the calcium atom that has lost two electrons), the color observed is brick red .