Answer:
Explanation:
The <em>pH</em> of a solution is a measure of the <em>molar concentration of </em><em>H₃O⁺</em> ions in the solution.
The mathematical expresssion that states the relation between the molar concentration of H₃O⁺ ions and the pH of the solution is:
This is pH is numerically equal to the negative decimal logarithm of the molar concentration of H₃O⁺.
The square brackets are used to indicate molar concentration.
Thus:
- pH = - log [H₃O⁺] ← equation
- 3.120 = -log [H₃O⁺] ← substituting values
- - 3.120 = log [H₃O⁺] ← product property of the multiplication
← antilogarithm property
- [H₃O⁺] = 7.586×10⁻⁴ M ← result
<h3>Hey Mate Here Is Your Answer:-</h3>
<h3>C- Diffusion</h3>
Reason:- The Mechanism of Diffusion In the case of food coloring in water, the water is the solvent while the food coloring is the solute. Once they've mixed, they make a solution. Diffusion takes time, though how much time depends on the kinetic energy of the molecules randomly bouncing among each other.
<h3>Hope This Helps You ❤️</h3>
Answer:
b. 7.5 x 10^-3
Explanation:
To solve this problem we need to keep in mind the <em>definition of molarity</em>:
- Molarity = moles of solute / liters of solution
With the above information in mind it is possible to calculate the moles of solute, given the volume (10 mL) and concentration (0.75 M) of the solution:
- First we<u> convert 10 mL to L</u> ⇒ 10 mL / 1000 = 0.01 L
Then we <u>calculate the moles of AgNO₃</u>:
- moles of solute = Molarity * Liters of solution
- 0.01 L * 0.75 M = 7.5x10⁻³ mol AgNO₃
<em>One mole of AgNO₃ contains one mole of Ag⁺</em>, thus the number of Ag⁺ moles is also 7.5x10⁻³.
D= M/V so, D=300/40 wich is 7.5 so D= 7.5g/m3