Answer:
A water molecule consists of three atoms; an oxygen atom and two hydrogen atoms, which are bond together like little magnets. The atoms consist of matter that has a nucleus in the centre. The difference between atoms is expressed by atomic numbers. ... There are also uncharged particles in the nucleus, called neutrons.
Explanation:
Answer:
This:
Explanation:
Black holes occur when a massive star or larger reaches the final stage of it's lifespan. The star implodes and a black hole is the dying star's remains
Answer:
2.8
Explanation:
First, we will calculate the molarity of the acetylsalicylic acid solution.
M = mass of solute (g) / molar mass of solute × volume of solution (L)
M = 0.327 g / 180.158 g/mol × 0.237 L
M = 7.66 × 10⁻³ M
For a weak acid such as acetylsalicylic acid, we can find the concentration of H⁺ using the following expression.
[H⁺] = √(Ca × Ka)
where,
Ca: concentration of the acid
Ka: acid dissociation constant
[H⁺] = √(7.66 × 10⁻³ × 3.3 × 10⁻⁴)
[H⁺] = 1.6 × 10⁻³ M
The pH is:
pH = -log [H⁺]
pH = -log 1.6 × 10⁻³ = 2.8
sodium element is likely to have the highest thermal conductivity
Answer:
P₂ = 2.88 atm
Explanation:
Given data:
Initial volume of gas = 1.8 L
Final volume = 750 mL
Initial pressure = 17.5 Psi
Final pressure = ?
Solution:
We will convert the units first:
Initial pressure = 17.5 /14.696 = 1.2 atm
Final volume = 750 mL ×1L/1000L = 0.75 L
The given problem will be solved through the Boly's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
1.2 atm × 1.8 L = P₂ ×0.75 L
P₂ = 2.16 atm. L/ 0.75 L
P₂ = 2.88 atm