We know that 1 minute= 60 seconds (or 1 min= 60 s).
10 min* (60 s/ 1 min)* (2.0 m/ 1 s)= 1,200 m.
(Note that the units cancel out so you get the answer)
The final answer is 1,200 m.
Hope this helps~
Answer:
2.93 m (which agrees with answer "C" on the list)
Explanation:
Recall that the speed of the wave equals the product of the wave's length times its frequency. Therefore, the wavelength is going to be the quotient of the speed of the signal divided its frequency:
Wavelength = 2.997 10^8 / 1.023 10^8 = 2.93 m
Answer:
It will take 30 seconds to reach the ground, and it will be travelling at 294 m/s when it does so. This means that its average velocity was 147 m/s.
Explanation:

Since the initial velocity of a dropped object is 0, we can make this the equation:


The final velocity can be calculated with the formula:

Once again, since there is no initial velocity:

Since the initial velocity is 0, the average vertical velocity is 294/2=147 m/s.
Hope this helps!
Answer:
5.2 m
Explanation:
from the question we are given the following
depth of pool (d) = 3.2 m
height of laser above the pool (h) = 1 m
point of entry of laser beam from edge of water (l) = 2.5 m
we first have to calculate the angle at which the laser beam enters the water (∝),
tan ∝ = \frac{1}{2.2}
∝ = 24.44 degrees
from the attached diagram, the angle with the normal (i) = 90 - 24.4 = 65.56 degrees
lets assume it is a red laser which has a refractive index of 1.331 in water, and with this we can find the angle of refraction (r) using the formula below
refractive index = \frac{sin i}{sin r}
1.331 = \frac{sin 65.56}{sin r}
r = 43.16 degrees
we can get the distance (x) from tan r = \frac{x}{3.2}
tan 43.16 = \frac{x}{3.2}
x = 3 m
To get the total distance we need to add the value of x to 2.2 m
total distance = 3 + 2.2 = 5.2 m
<span>Determined by the distance between objects and the difference in mass between the objects is gravity or gravitational force. Gravity is dependent on those two factors, and is what causes objects on Earth to stay on the ground. It is defined as the "pull" that an object with mass exerts on another object that makes the latter gravitate towards the former. Weight is the measure of gravitational force exerted by a mass.</span>