The car is accelerating at 3 m/s² in the positive direction (to the right). By Newton's second law, the net force on the car in this direction is
∑ F = F[a] - F[f] - F[air] = ma
3100 N - 200 N - F[air] = (650 kg) (3 m/s²)
Solve for F[air] :
F[air] = 3100 N - 200 N - (650 kg) (3 m/s²)
F[air] = 3100 N - 200 N - 1950 N
F[air] = 950 N
Answer:
0.25m²
Explanation:
We know that the summation of forces in the vertical direction is zero
So
PA-mg=0
A=mg/p
So
Substituting
A= 75* 9.8/3*10^-3
=0.25m² which is the total shoe area
Answer:

Explanation:
Static friction occurs when an object initially starts at rest. When the surfaces of the materials touch, the microscopic unevenness interlock greatest with each other, causing the most friction out of the three.
During sliding friction, an object is already moving or in motion. The microscopic surfaces still interlock, but because the object is in motion, it has a momentum. Therefore, the magnitude of sliding friction is less than that of static friction.
Rolling friction occurs when an object rolls across some surface. Rather than surfaces interlocking, rolling friction is caused by the constant distortion of surfaces. As it rolls, the surfaces of the object are constantly wrapping and changing. This distortion causes the rolling friction. However, it is much less in magnitude when compared to static or sliding friction.
Answer:
d= 794.4 cmExplanation:
Given that
Speed ,V= 286 km/h

V=79.44 m/s
Given that time ,t= 100 ms
t= 0.1 s
We know that ( if acceleration is zero)
Distance = Speed x time
d= V t
Now by putting the values in the above equation
d = 79.44 x 0.1 m
d= 7.944 m
We know that 1 m = 100 cm
d= 794.4 cm
Chemical Reaction between metal oxide and water solution