I think the correct answers from the choices listed above are options 1, 5 and 7. Angular momentum quantum number determine the energy of an orbital, the shape of the orbital and <span>the overall size of an orbital. Hope this answers the question.</span>
Answer:
Frequency of oscillation, f = 4 Hz
time period, T = 0.25 s
Angular frequency, 
Given:
Time taken to make one oscillation, T = 0.25 s
Solution:
Frequency, f of oscillation is given as the reciprocal of time taken for one oscillation and is given by:
f = 
f = 
Frequency of oscillation, f = 4 Hz
The period of oscillation can be defined as the time taken by the suspended mass for completion of one oscillation.
Therefore, time period, T = 0.25 s
Angular frequency of oscillation is given by:



Mexico Mexico language to is the answer to the question
Answer:


Explanation:
= Initial momentum of the pin = 13 kg m/s
= Initial momentum of the ball = 18 kg m/s
= Momentum of the ball after hit
= Angle ball makes with the horizontal after hitting the pin
= Angle the pin makes with the horizotal after getting hit by the ball
Momentum in the x direction

Momentum in the y direction


The pin's resultant velocity is 

The pin's resultant direction is
below the horizontal or to the right.