The maximum force of static friction is the product of normal force (P) and the coefficient of static friction (c). In a flat surface, normal force is equal to the weight (W) of the body.
P = W = mass x acceleration due to gravity
P = (0.3 kg) x (9.8 m/s²) = 2.94 kg m/s² = 2.94 N
Solving for the static friction force (F),
F = P x c
F = (2.94 N) x 0.6 = 1.794 N
Therefore, the maximum force of static friction is 1.794 N.
Answer:
Gases, liquids and solids are all made up of microscopic particles, but the behaviors of these particles differ in the three phases. ... gas are well separated with no regular arrangement. liquid are close together with no regular arrangement. solid are tightly packed, usually in a regular pattern.
<h3>Hope this is fine for you</h3>
Answer:
Q = 282,000 J
Explanation:
Given that,
The mass of liquid water, m = 125 g
Temperature, T = 100°C
The latent heat of vaporization, Hv = 2258 J/g.
We need to find the amount of heat needed to vaporize 125 g of liquid water. We can find it as follows :

or
Q = 282,000 J
So, the required heat is 282,000 J
.
Answer: Option (d) is correct.
Explanation:
Given, 1,152 British thermal units
1 British thermal unit = 1055.06 joules
So, in 1,152 British thermal units there will be :

Hence, from the given options the closest answer is of option (d). So, option (d) is correct.
Answer:

Explanation:
Let the sphere is uniformly charge to radius "r" and due to this charged sphere the electric potential on its surface is given as

now we can say that


now electric potential is given as


now work done to bring a small charge from infinite to the surface of this sphere is given as


here we know that

now the total energy of the sphere is given as



