Answer:
Avogadro's law.
Explanation:
Avogadro’s law states that, equal volumes of all gases at the same temperature and pressure contain the same number of molecules.
Mathematically,
V n
V = Kn where V = volume in cm3, dm3, ml or L; n = number of moles of gas;
K = mathematical constant.
The ideal gas equation is a combination of Boyle's law, Charles' law and Avogadro’s law.
V 1/P at constant temperature (Boyle’s law)
V T at constant pressure ( Charles’law)
V n at constant temperature and pressure ( Avogadro’s law )
Combining the equations yields,
V nT/P
Introducing a constant,
V = nRT/P
PV = nRT
Where P = pressure in atm, Pa, torr, mmHg or Nm-2; V = volume in cm3, dm3, ml or L; T = temperature in Kelvin; n = number of moles of gas in mol; R = molar gas constant = 0.082 dm3atmK-1mol-1
when an object is revolving in circular path then its velocity is always along the tangent of the circular path
so while moving in circular path if the string is break then due to law of inertia the object will always move in the direction of initial motion
As we know that as per law of inertia if an object will not change its state of motion or state of rest until some external force will act on it.
So here also the object will move along its tangential direction once the string will break
so here the correct path will be
Option B
Answer:
14.5m/s
Explanation:you had to divide 2.5s divide that by 1.8
Answer:
d = 10.076 m
Explanation:
We need to obtain the velocity of the ball in the y direction
Vy = 24.5m/s * sin(35) = 14.053 m/s
To obtain the distance, we use the formula
vf^2 = v0^2 -2*g*d
but vf = 0
d = -vo^2/2g
d = (14.053)^2/2*(9.8) = 10.076 m
Because if there's no force on the object, then it just moves in a straight line.