1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natka813 [3]
3 years ago
10

A metal blade of length L = 300 cm spins at a constant rate of 17 rad/s about an axis that is perpendicular to the blade and thr

ough its center. A uniform magnetic field B = 4.0 mT is perpendicular to the plane of rotation. What is the magnitude of the potential difference (in V) between the center of the blade and either of its ends?
Physics
1 answer:
-Dominant- [34]3 years ago
3 0

We are being given that:

  • The length of a metal blade = 300 cm
  • The angular velocity at which the metal blade is rotating about its axis  is ω = 17 rad/s
  • The magnetic field B = 4.0 mT

A pictorial view showing the diagrammatic representation of the information given in the question is being attached in the image below.

From the attached image below, the potential difference across the conducting element of the length (dx) moving with the velocity (v) appears to be perpendicular to the magnetic field (B).

The magnitude of the potential difference induced between the center of the blade in relation to either of its ends can be determined by using the derived formula from Faraday's law of induction which can be expressed as:

\mathsf{E = B\times l\times v}

where;

B = magnetic field

l = length

v = relative speed

From the diagram, Let consider the length of the conducting element (dx) at a distance of length (x) from the center O.

Then, the velocity (v) = ωx

The potential difference across it can now be expressed as:

\mathsf{dE = B*(dx)*(\omega x)}

For us to determine the potential difference, we need to carry out the integral form from center point O to L/2.

∴

\mathsf{E = \int ^{L/2}_{0}* B (\omega x ) *(dx)}

\mathsf{E = B (\omega ) \times \Big[ \dfrac{x^2}{2}\Big]^{L/2}_{0}}

\mathsf{E = B (\omega ) * \Big[ \dfrac{L^2}{8}\Big]}

Recall that,

magnetic field (B) = 4 mT = 4 × 10⁻³  T

Length L = 300 cm = 3m

angular velocity (ω) = 17 rad/s

\mathsf{E = (4\times 10^{-3}) * (17) \Big[ \dfrac{(1.5)^2}{8}\Big]}

\mathsf{E = 19.13 mV}

Thus, we can now conclude that the magnitude of the potential difference as a result of the rotation caused by the metal blade from the center to either of its ends is 19.13 mV.

Learn more about Faraday's law of induction here:

brainly.com/question/13369951?referrer=searchResults

You might be interested in
When the Earth is closest to the Sun, it is at:
ahrayia [7]

a). Perihelion . . . the point in Earth's orbit that's closest to the Sun.
                            We pass it every year early in January. 


b). Aphelion . . . the point in Earth's orbit that's farthest from the Sun.
                          We pass it every year early in July. 

c). Proxihelion . . . a made-up, meaningless word

d). Equinox . . . the points on the map of the stars where the Sun
                         appears to be on March 21 and September 21.

5 0
3 years ago
A 6.0 g marble is fired vertically upward using a spring gun. The spring must be compressed 9.4 cm if the marble is to just reac
RoseWind [281]

Answer:

a) \Delta U_{g} = 12.945\,J, b) \Delta U_{k} = 12.945\,J, c) k = 2930.059\,\frac{N}{m}

Explanation:

a) The change in the gravitational potential energy of the marble-Earth system is:

\Delta U_{g} = (0.06\,kg)\cdot \left(9.807\,\frac{m}{s^{2}}\right)\cdot (22\,m)

\Delta U_{g} = 12.945\,J

b) The change in the elastic potential energy of the spring is equal to the change in the gravitational potential energy, then:

\Delta U_{k} = 12.945\,J

c) The spring constant of the gun is:

\Delta U_{k} = \frac{1}{2} \cdot k \cdot x^{2}

k = \frac{2\cdot \Delta U_{k}}{x^{2}}

k = \frac{2\cdot (12.945\,J)}{(0.094\,m)^{2}}

k = 2930.059\,\frac{N}{m}

4 0
3 years ago
Which statement most accurately finishes the sentence: force always ... 1. Come in pairs
lys-0071 [83]
Comes in pairs
Just like in Newton’s 3rd law, there is always an equal and opposite force
6 0
3 years ago
Can any ideal gas power cycle have a thermal efficiency greater than 55 percent when using thermal energy reservoirs at 627∘C at
Yanka [14]

Answer:

Since the maximum thermal efficiency is higher than 55 percent, there can be a power cycle with these reservoir temperature with an efficiency higher than 55 percent.

Explanation:

The maximum thermal efficiency is determined from the given temperature

nth Carnot = 1- TL/TH

Where TL= 17+273= 290k

TH= 627*273= 900K.

nth Carnot = 1- 290/900 = 0.68

0.68*100 = 68 percent

8 0
3 years ago
HURRY!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
OLga [1]
At the top, due to the fact that POTENTIAL energy is Stored energy.
5 0
3 years ago
Read 2 more answers
Other questions:
  • Which statement is true about an airplane wing during flight?
    10·2 answers
  • Why are rocks important to geologists? Check all that apply.
    10·2 answers
  • What would happen to a loop in a metal tube when it is heated
    13·1 answer
  • When an objects total mechanical energy is conserved and it is dropped from rest how does the objects initial potential energy c
    13·1 answer
  • Sugar dissolves in water by ______ or breaking into smaller pieces that spread throughout the water.
    8·1 answer
  • How long would light take to travel from one hill to another
    14·1 answer
  • Which is developed during the process of technology design
    5·1 answer
  • Find the frequency of a spring block system if it is doing 4 oscillation in 100s
    7·1 answer
  • a car has a mass of 200kg. It is on a hill 1000m high. How much gravitational potential energy does the car have?
    11·1 answer
  • *please refer to photo attached* The figure below shows a small, charged sphere, with a charge of q = +44.0 nC, that moves a dis
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!