Answer:
a = 2.22 [m/s^2]
Explanation:
First we have to convert from kilometers per hour to meters per second
![40 [\frac{km}{h}]*[\frac{1h}{3600s}]*[\frac{1000m}{1km}] = 11.11 [m/s]](https://tex.z-dn.net/?f=40%20%5B%5Cfrac%7Bkm%7D%7Bh%7D%5D%2A%5B%5Cfrac%7B1h%7D%7B3600s%7D%5D%2A%5B%5Cfrac%7B1000m%7D%7B1km%7D%5D%20%3D%2011.11%20%5Bm%2Fs%5D)
We have to use the following kinematics equation:

where:
Vf = final velocity = 11.11 [m/s]
Vi = initial velocity = 0
a = acceleration [m/s^2]
t = time = 5 [s]
The initial speed is taken as zero, as the car starts from zero.
11.11 = 0 + (a*5)
a = 2.22 [m/s^2]
Answer:
The average speed of the bus, v = 1.55 m/s
Explanation:
Given that,
Number of blocks traveled by bus towards east = 6
Number of blocks traveled by bus towards north = 8
Length of each block = 100 m
Distance traveled by bus towards east 6 x 100 = 600 m
Distance traveled by bus towards north 8 x 100 = 800 m
The total distance traveled, d = 600 + 800 = 1400
Time taken by the bus to travel is, t = 15 minutes
The velocity is given by the formula
v = d/t m
Substituting the values in the above equation
v = 1400 m /(15 x 60) s
= 1.55 m/s
Hence, the average speed of the bus, v = 1.55 m/s
Answer:
B. Landscape B
Explanation:
Shale is fine sediment pressed together to form rock.
Sandstone is larger (sand-grain-sized) sediment cemented together to form rock.
Shale erodes faster, as evidenced by the second attachment. That attachment shows erosion of a rock face consisting of interbedded shale and sandstone. The shale has receded significantly, leaving the sandstone layers with space between them.
I can't find the attached circuit.
Maximum power transfer occurs when the load impedance
is equal to the internal impedance of the power source.
Answer:
It can be calculated from Snell's law by setting the refraction angle i.e. equal to 90°.
Hope it helps!