Answer:
O2 has two more electrons compared to N2, with extra 2 electrons in the higher energy anti-bonding orbitals known as Diradical. These electrons have higher energy and are unpaired; therefore, O2 is more reactive
Explanation:
Potential energy can be calculated using the following rule:
potential energy = mgh where:
m is the mass = 85 kg
g is the acceleration due to gravity = 9.8 m/sec^2
h is the height = 4 km = 4000 meters
Substitute in the above equation to get the potential energy as follows:
Potential energy = 85*9.8*4000 = 3332000 joules
Given Information:
Pendulum 1 mass = m₁ = 0.2 kg
Pendulum 2 mass = m₂ = 0.6 kg
Pendulum 1 length = L₁ = 5 m
Pendulum 2 length = L₂ = 1 m
Required Information:
Affect of mass on the frequency of the pendulum = ?
Answer:
The mass of the ball will not affect the frequency of the pendulum.
Explanation:
The relation between period and frequency of pendulum is given by
f = 1/T
The period of pendulum is given by
T = 2π√(L/g)
Where g is the acceleration due to gravity and L is the length of the string
As you can see the period (and frequency too) of pendulum is independent of the mass of the pendulum. Therefore, the mass of the ball will not affect the frequency of the pendulum.
Bonus:
Pendulum 1:
T₁ = 2π√(L₁/g)
T₁ = 2π√(5/9.8)
T₁ = 4.49 s
f₁ = 1/T₁
f₁ = 1/4.49
f₁ = 0.22 Hz
Pendulum 2:
T₂ = 2π√(L₂/g)
T₂ = 2π√(1/9.8)
T₂ = 2.0 s
f₂ = 1/T₂
f₂ = 1/2.0
f₂ = 0.5 Hz
So we can conclude that the higher length of the string increases the period of the pendulum and decreases the frequency of the pendulum.
ANSWER:
The easiest way to get a fairly accurate measure of your water flow rate is to time yourself filling up a bucket. So for example if you fill up a 10 litre bucket in 1.5 minutes, then your flow rate will be: 10/1.5 = 6.66 Litres per minute.
Answer:
m = 2.01[kg]
Explanation:
This problem can be solved using Newton's second law which tells us that the force applied on a body is equal to the product of mass by acceleration.

where:
F = force = 12.5 [N]
m = mass [kg]
a = acceleration = 6.2 [m/s²]
![12.5=m*6.2\\m = 2.01[kg]](https://tex.z-dn.net/?f=12.5%3Dm%2A6.2%5C%5Cm%20%3D%202.01%5Bkg%5D)