Using Newton's second law of motion:
F=ma ; [ F = force (N: kgm/s^2);m= mass (kg); a = acceleration (m/s^2)
Given: Find: Formula: Solve for m:
F: 2500N mass:? F=ma Eq.1 m=F/a Eq. 2
a= 200m/s^2
Solution:
Using Eq.2
m= (2500 kgm/s^2)/ (200m/s^2) = 12.5 kg
It's important to know that diffraction gratings can be identified by the number of lines they have per centimeter. Often, more lines per centimeter is more useful because the images separation is greater when this happens. That is, the distance between lines increases.
<h2>Therefore, the answer is 2.</h2>
I believe the answer is C
Answer:
heat it up to above 176f or apply alternating current
Explanation:
Answer:
All these is caused by the repulsion force.
Explanation:
The electroscope produces a series of electric charges that produce a repulsion force when is putted in contact with a electric charged object.
As the physics law mentions, two different forces are repealed, the electrocospe is charged negatively and the object positively, causing a repulsion force that avoids that both objects touch the other.