Answer : Both solutions contain
molecules.
Explanation : The number of molecules of 0.5 M of sucrose is equal to the number of molecules in 0.5 M of glucose. Both solutions contain
molecules.
Avogadro's Number is
=
which represents particles per mole and particles may be typically molecules, atoms, ions, electrons, etc.
Here, only molarity values are given; where molarity is a measurement of concentration in terms of moles of the solute per liter of solvent.
Since each substance has the same concentration, 0.5 M, each will have the same number of molecules present per liter of solution.
Addition of molar mass for individual substance is not needed. As if both are considered in 1 Liter they would have same moles which is 0.5.
We can calculate the number of molecules for each;
Number of molecules =
;
∴ Number of molecules =
which will be = 
Thus, these solutions compare to each other in that they have not only the same concentration, but they will have the same number of solvated sugar molecules. But the mass of glucose dissolved will be less than the mass of sucrose.
The answer is D, far apart and have weak attractive forces between them. The ideal gas means that the volume of molecule and the forces between them can be ignored.
Answer:
<h2>Molarity = 7 mol / L</h2>
Explanation:
Since the mass of NaCl and it's volume has been given we can find the molarity by using the formula
<h3>

</h3>
where
C is the molarity
m is the mass
M is the molar mass
v is the volume
From the question
v = 0.5 L
m = 205 g
We must first find the molar mass and then substitute the values into the above formula
M( Na) = 23 , M( Cl) = 35.5
Molar mass of NaCl = 23 + 35.5 =
58.5 g/mol
So the molarity of NaCl is

C = 7.00854
We have the final answer as
<h3>Molarity = 7 mol / L</h3>
Hope this helps you
Using the ideal gas equation:
pV = nRT
n = pV / RT
1atm = 101325Pa, so p = 10132500Pa
1L = 0.001m^3, so V = 0.050m^3
R = 8.214 (ideal gas constant)
T = 273K
Hence moles of CO2 = (10132500 * 0.050) / (8.314 * 273) = 223.2101553
Reaction ratio between oxygen and CO2 is 1:2
Hence moles of O2 = 223... / 2 = 112 moles (3sf)