Answer:
carbon dioxide
Explanation:
Carbon burns in oxygen to form carbon dioxide. Since hydrocarbon fuels only contain two elements, we always obtain the same two products when they burn. In the equation below methane (CH 4) is being burned. The oxygen will combine with the carbon and the hydrogen in the methane molecule to produce carbon dioxide (CO 2) and water (H 2O).
Carbon, as graphite, burns to form gaseous carbon (IV) oxide (carbon dioxide), CO2. ... When the air or oxygen supply is restricted, incomplete combustion to carbon monoxide, CO, occurs. 2C(s) + O2(g) → 2CO(g) This reaction is important. When one mole of carbon is exposed to some energy in the presence of one mole of oxygen gas, one mole of carbon dioxide gas is produced. This reaction is a combustion reaction.
Answer:
The dissociation constant of phenol from given information is
.
Explanation:
The measured pH of the solution = 5.153

Initially c
At eq'm c-x x x
The expression of dissociation constant is given as:
![K_a=\frac{[C_6H_5O^-][H^+]}{[C_6H_5OOH]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BC_6H_5O%5E-%5D%5BH%5E%2B%5D%7D%7B%5BC_6H_5OOH%5D%7D)
Concentration of phenoxide ions and hydrogen ions are equal to x.
![pH=-\log[x]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5Bx%5D)
![5.153=-\log[x]](https://tex.z-dn.net/?f=5.153%3D-%5Clog%5Bx%5D)



The dissociation constant of phenol from given information is
.
Malleable, shiny and good conductors
A B E
Take a hypothetical sample of exactly 100 grams of the solution.
(16g urea) / (60.06 g urea/mol) = 0.2664 mol urea
((100 g total) - (16g urea)) = 84.0 g H2O = 0.0840 kg H2O
(0.2664 mol) /0.0840 (kg) = 3.17143mol/kg = 3.18m urea
Answer:
Density (ρ) = 5 kilogram/cubic meter
Explanation:
Steps:
ρ =
m
V
=
10 kilogram
2 cubic meter
= 5 kilogram/cubic meter