Answer: Flow rate is inversely proportional to viscosity.
Explanation: The relation is called Poiseuille's law, which describes the smooth flow of a fluid along a tube.
Answer:
401.17 K is the minimum temperature at which the reaction will become spontaneous under standard state conditions.
Explanation:
The expression for the standard change in free energy is:
Where,
is the change in the Gibbs free energy.
T is the absolute temperature. (T in kelvins)
is the enthalpy change of the reaction.
is the change in entropy.
Given at:-
Temperature = 25.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (25.0 + 273.15) K = 298.15 K
= 128.9 kJ/mol
= 33.1 kJ/mol
Applying in the above equation, we get as:-

= 0.32131 kJ/Kmol
So, For reaction to be spontaneous, 
Thus, For minimum temperature:-

<u>Hence, 401.17 K is the minimum temperature at which the reaction will become spontaneous under standard state conditions.</u>
Answer:
Option D is correct.
Explanation:
Compared to a sample of helium at STP, the same sample of helium at a higher temperature and a lower pressure because any gas at a higher temperature and a lower pressure will behaves like an ideal gas. for eg.
nitrogen at STP show its behavior as an ideal gas.
When pressure of a gas increased & temperature is decreased then the gas does not follow ideal gas law.
Therefore option D is correct.
With standard pressure there is a set list of values. (at STP), most common is 760torr. So whenever you see "at STP" or "at standard temperature pressure" you will use 760torr for pressure. Same thing goes with temperature, if you're not given temp and it says at STP you will use 273K.
For this problem:
You will be using the combined gas law:
(Pressure 1) x (Volume 1) / (Temp. 1) = (Pressure 2) x (Volume 2) / (Temp. 2)
(760torr) x (5.63L) / (287K) = (?) (9.21L) / (287K)
Pressure 2 = 465torr
*Hope this clarifies STP for you! :)
Cellular respiration and photosynthesis are important parts of the carbon cycle. The carbon cycle is the pathways through which carbon is recycled in the biosphere. While cellular respiration releases carbon dioxide into the environment, photosynthesis pulls carbon dioxide out of the atmosphere.
these are the definitions so hope it helps you:
<u><em>carbon cycle</em></u><em> - Pathways through which carbon is recycled through the biosphere.
</em>
<u><em>cellular respiration</em></u><em> - Process of breaking down glucose to obtain energy in the form of ATP.
</em>
<u><em>photosynthesis</em></u><em> - Process by which specific organisms (including all plants) use the sun's energy to make their own food from carbon dioxide and water; process that converts the energy of the sun, or solar energy, into carbohydrates, a type of chemical energy.
</em>