Missing in your question Ka2 =6.3x10^-8
From this reaction:
H2SO3 + H2O ↔ H3O+ + HSO3-
by using the ICE table :
H2SO3 ↔ H3O + HSO3-
intial 0.6 0 0
change -X +X +X
Equ (0.6-X) X X
when Ka1 = [H3O+][HSO3-]/[H2SO3]
So by substitution:
1.5X10^-2 = (X*X) / (0.6-X) by solving this equation for X
∴ X = 0.088
∴[H2SO3] = 0.6 - 0.088 = 0.512
[HSO3-] = [H3O+] = 0.088
by using the ICE table 2:
HSO3- ↔ H3O + SO3-
initial 0.088 0.088 0
change -X +X +X
Equ (0.088-X) (0.088+X) X
Ka2= [H3O+] [SO3-] / [HSO3-]
we can assume [HSO3-] = 0.088 as the value of Ka2 is very small
6.3x10^-8 = (0.088+X)*X / 0.088
X^2 +0.088 X - 5.5x10^-9= 0 by solving this equation for X
∴X= 6.3x10^-8
∴[H3O+] = 0.088 + 6.3x10^-8
= 0.088 m ( because X is so small)
∴PH= -㏒[H3O+]
= -㏒ 0.088 = 1.06
sorry but if you are looking for an answer I don't know one. :(
(1) a beta particle is your answer. Na-24 decays through beta decay, turning a neutron into a proton, electron (beta particle), and an neutrino.
Answer:the perpendicular force per unit area
pressure, in the physical sciences, the perpendicular force per unit area, or the stress at a point within a confined fluid.
Explanation:
mark me brainliest!!
Answer:
![K_2=\frac{[NOBr]^4_{eq}}{[NO]^4_{eq}[Br]^2_{eq}}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BNOBr%5D%5E4_%7Beq%7D%7D%7B%5BNO%5D%5E4_%7Beq%7D%5BBr%5D%5E2_%7Beq%7D%7D)
Explanation:
Hello,
In this case, for the equilibrium condition, the equilibrium constant is defined via the law of mass action, which states that the division between the concentrations of the products over the concentration of the reactants at equilibrium equals the equilibrium constant, for the given reaction:

The suitable equilibrium constant turns out:
![K_2=\frac{[NOBr]^4_{eq}}{[NO]^4_{eq}[Br]^2_{eq}}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BNOBr%5D%5E4_%7Beq%7D%7D%7B%5BNO%5D%5E4_%7Beq%7D%5BBr%5D%5E2_%7Beq%7D%7D)
Or in terms of the initial equilibrium constant:

Since the second reaction is a doubled version of the first one.
Best regards.