For an object to conduct electricity it should have free or delocalised electrons that are free to pass the charge and hence take part in conducting electricity.
From the given choices
Chlorine is a halogen existing as a diatomic gas. Iodine too is a halogen and 2 Iodine atoms held together by covalent bond. Cl - Cl bonds and I-I bonds are covalent bonds. the outer electrons of Cl and I take part in covalent bonds therefore they are fixed and not free to move about. therefore no free electrons to conduct electricity.
Sulfur is a solid that too is held together by covalent bonds so it does not have free electrons to conduct electricity.
Silver is a metal and a general property of metals are their ability to conduct electricity.
metal structure are metal ions tightly packed together. when the metal atoms are tightly packed their valence electrons are removed and delocalised. Positively charged metal ions are embedded in a sea of delocalised electrons.
therefore there are delocalised electrons that can conduct electricity
answer is 3) silver
Hey there!:
Given the reaction:
2 C2H2 + 5 O2 → 4 CO2 + 2 H2O
5 moles O2 ------------- 4 moles CO2
3.00 moles O2 ---------- ( moles of CO2 ?? )
moles of CO2 = 3.00 * 4 / 5
moles of CO2 = 12 / 5
moles of CO2 = 2.4 moles
So, molar mass CO2 = 44.01 g/mol
Therefore:
1 mole CO2 -------------- 44.01 g
2.4 moles CO2 ---------- ( mass of CO2 )
mass of CO2 = 2.4 * 44.01 / 1
mass of CO2 = 106 g
Answer A
Hope that helps!
I think it's D, because theoretical yield is like, the yield you'd get if 100% of the reactants formed to make product. Well that's how I think of it, but it has something to do with limiting reagents and stuff. Sorry this isn't a really detailed explanation.
Answer:
Covalent bond
Explanation:
they will make a covalent bond with each other because both are non- metals and have a low electronegativity difference.
Answer:
3.861x10⁻⁹ mol Pb⁺²
Explanation:
We can <u>define ppm as mg of Pb²⁺ per liter of water</u>.
We<u> calculate the mass of lead ion in 100 mL of water</u>:
- 100.0 mL ⇒ 100.0 / 1000 = 0.100 L
- 0.100 L * 0.0080 ppm = 8x10⁻⁴ mg Pb⁺²
Now we <u>convert mass of lead to moles</u>, using its molar mass:
- 8x10⁻⁴ mg ⇒ 8x10⁻⁴ / 1000 = 8x10⁻⁷ g
- 8x10⁻⁷ g Pb²⁺ ÷ 207.2 g/mol = 3.861x10⁻⁹ mol Pb⁺²