<span>The 2nd truck was overloaded with a load of 16833 kg instead of the permissible load of 8000 kg.
The key here is the conservation of momentum.
For the first truck, the momentum is
0(5100 + 4300)
The second truck has a starting momentum of
60(5100 + x)
And finally, after the collision, the momentum of the whole system is
42(5100 + 4300 + 5100 + x)
So let's set the equations for before and after the collision equal to each other.
0(5100 + 4300) + 60(5100 + x) = 42(5100 + 4300 + 5100 + x)
And solve for x, first by adding the constant terms
0(5100 + 4300) + 60(5100 + x) = 42(14500 + x)
Getting rid of the zero term
60(5100 + x) = 42(14500 + x)
Distribute the 60 and the 42.
60*5100 + 60x = 42*14500 + 42x
306000 + 60x = 609000 + 42x
Subtract 42x from both sides
306000 + 18x = 609000
Subtract 306000 from both sides
18x = 303000
And divide both sides by 18
x = 16833.33
So we have the 2nd truck with a load of 16833.33 kg, which is well over it's maximum permissible load of 8000 kg. Let's verify the results by plugging that mass into the before and after collision momentums.
60(5100 + 16833.33) = 60(21933.33) = 1316000
42(5100 + 4300 + 5100 + 16833.33) = 42(31333.33) = 1316000
They match. The 2nd truck was definitely over loaded.</span>
<em>Answer:</em>
<h3><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>True</em></h3>
- <em>Because </em><em>Gravity is the force of attraction between two objects, and Earth's gravity pulls matter downward, toward its center. It pulls precipitation down from clouds and pulls water downhill. Gravity also moves air and ocean water. ... Gravity pulls denser air and water downward, forcing less dense air and water to move upward.</em>
<em>Carryonlearning</em>
Answer:
The magnitude of the force of friction equals the magnitude of my push
Explanation:
Since the crate moves at a constant speed, there is no net acceleration and thus, my push is balanced by the frictional force on the crate. So, the magnitude of the force of friction equals the magnitude of my push.
Let F = push and f = frictional force and f' = net force
F - f = f' since the crate moves at constant speed, acceleration is zero and thus f' = ma = m (0) = 0
So, F - f = 0
Thus, F = f
So, the magnitude of the force of friction equals the magnitude of my push.
Answer:
f = 6.37 Hz, T = 0.157 s
Explanation:
The expression you have is
y = 5 sin (3x - 40t)
this is the equation of a traveling wave, the general form of the expression is
y = A sin (kx - wt)
where A is the amplitude of the motion, k the wave vector and w the angular velocity
Angle velocity and frequency are related
w = 2π f
f = w / 2π
from the equation w = 40 rad / s
f = 40 / 2π
f = 6.37 Hz
frequency and period are related
f = 1 / T
T = 1 / f
T = 1 / 6.37
T = 0.157 s
It's called gravity, it attract the sun toward the gravitational pull making everything circulate. I don't really know how to explain it though.