The simple machine that is not correctly matched with its appropriate task is the inclined plane because there is no such big ramp that is as high as 1 storey building, the appropriate task would be Lifting a heavy box and moving it across a room. and for the pulley : <span>Moving a heavy box up to the second floor of a building.</span>
Answer:
v_f = 1.05 m/s
Explanation:
From conservation of energy;
E_f = E_i
Thus,
(1/2)m(v_f)² + (1/2)I(ω_f)² + m•g•h_f + (1/2)k•(x_f)² = (1/2)m(v_i)² + (1/2)I(ω_i)² + m•g•h_i + (1/2)k•(x_i)²
This reduces to;
(1/2)m(v_f)² + (1/2)Ik(x_f)² = (1/2)k•(x_i)²
Making v_f the subject, we have;
v_f = [√(k/m)] * [√((x_i)² - (x_f)²)]
We know that ω = √(k/m)
Thus,
v_f = ω[√((x_i)² - (x_f)²)]
Plugging in the relevant values to obtain;
v_f = 17.8[√((0.068)² - (0.034)²)]
v_f = 17.8[0.059] = 1.05 m/s
Electrical power is defined as
P = I * V
I = 3 amperes
V = 240 volts
Power = 3 * 240
Power = 720 Watts. Answer
Answer:
10000N
Explanation:
Given parameters:
Mass of the car = 1000kg
Acceleration = 3m/s²
g = 10m/s²
Unknown:
Weight of the car = ?
Solution:
To solve this problem we must understand that weight is the vertical gravitational force that acts on a body.
Weight = mass x acceleration due to gravity
So;
Weight = 1000 x 10 = 10000N
The angles for the first-order diffraction of the shortest and longest wavelengths of visible light are 22.33 ⁰ and 49.46 ⁰ respectively.
<h3>Angle for the first order diffraction</h3>
The angle for the first order diffraction is calculated as follows;
dsinθ = mλ
sinθ = mλ/d
<h3>For shortest wavelength (λ = 380 nm)</h3>
d = 1/10,000 lines/cm
d = 1 x 10⁻⁴ cm x 10⁻² m/cm = 1 x 10⁻⁶ m/lines
sinθ = (1 x 380 x 10⁻⁹)/(1 x 10⁻⁶)
sinθ = 0.38
θ = sin⁻¹(0.38)
θ = 22.33 ⁰
<h3>For longest wavelength (λ = 760 nm)</h3>
sinθ = (1 x 760 x 10⁻⁹)/(1 x 10⁻⁶)
sinθ = 0.76
θ = sin⁻¹(0.76)
θ = 49.46 ⁰
Learn more about diffraction here: brainly.com/question/16749356
#SPJ1