Answer:
Pb is the substance that experiments the greatest temperature change.
Explanation:
The specific heat capacity refers to the amount of heat energy required to raise in 1 degree the temperature of 1 gram of substance. The highest the heat capacity, the more energy it would be required. These variables are related through the equation:
Q = c . m . ΔT
where,
Q is the amount of heat energy provided (J)
c is the specific heat capacity (J/g.°C)
m is the mass of the substance
ΔT is the change in temperature
Since the question is about the change in temperature, we can rearrange the equation like this:

All the substances in the options have the same mass (m=10.0g) and absorb the same amount of heat (Q=100.0J), so the change in temperature depends only on the specific heat capacity. We can see in the last equation that they are inversely proportional; the lower c, the greater ΔT. Since we are looking for the greatest temperature change, It must be the one with the lowest c, namely, Pb with c = 0.128 J/g°C. This makes sense because Pb is a metal and therefore a good conductor of heat.
Its change in temperature is:

Answer:
Final temperature is 34.2 °C
Explanation:
Given data:
mass of metal = 125 g
temperature of metal = 93.2 °C
mass of water v= 100 g
temperature of water = 18.3 °C
specific heat of meta is = 0.900 j/g. °C
specific heat of water is = 4.186 j/g. °C
final temperature of water and metal = ?
Solution:
Q = m . c . ΔT
ΔT = T2-T1
now we will put the values in equation
Q1 = m . c . ΔT
Q1 = 125 g. 0.900 j/g. °C .93.2°C - T2
Q1 = 112.5 (93.2°C - T2)
Q1 =10,485 - 112.5T2
Q2 = m . c . ΔT
Q2 = 100 . 4.186. (T2- 18.3)
Q2 = 418.6 . (T2- 18.3)
Q2 = 418.6T2 - 7660.38
10,485 - 112.5T2 = 418.6T2 - 7660.38
10,485 + 7660.38 = 418.6T2+ 112.5T2
18145.38 = 531.1 T2
T2 = 18145.38/531.1
T2 = 34.2 °C
Answer:
Value of
for the given redox reaction is 
Explanation:
Redox reaction with states of species:

Reaction quotient for this redox reaction:
![Q_{p}=\frac{[Cr^{3+}]^{2}.P_{Cl_{2}}^{3}}{[H^{+}]^{14}.[Cr_{2}O_{7}^{2-}].[Cl^{-}]^{6}}](https://tex.z-dn.net/?f=Q_%7Bp%7D%3D%5Cfrac%7B%5BCr%5E%7B3%2B%7D%5D%5E%7B2%7D.P_%7BCl_%7B2%7D%7D%5E%7B3%7D%7D%7B%5BH%5E%7B%2B%7D%5D%5E%7B14%7D.%5BCr_%7B2%7DO_%7B7%7D%5E%7B2-%7D%5D.%5BCl%5E%7B-%7D%5D%5E%7B6%7D%7D)
Species inside third braket represent concentration in molarity, P represent pressure in atm and concentration of
is taken as 1 due to the fact that
is a pure liquid.
![pH=-log[H^{+}]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%7B%2B%7D%5D)
So, ![[H^{+}]=10^{-pH}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D10%5E%7B-pH%7D)
Plug in all the given values in the equation of
:

Answer:

Explanation:
Quantity of heat required by 10 gram of ice initially warm it from -5°C to 0°C:

here;
mass, m = 10 g
specific heat capacity of ice, 
change in temperature, 


Amount of heat required to melt the ice at 0°C:

where, 
we know that no. of moles is = (wt. in gram)
(molecular mass)


Now, the heat required to bring the water to 70°C from 0°C:

specific heat of water, 
change in temperature, 


Therefore the total heat required to warm 10.0 grams of ice at -5.0°C to a temperature of 70.0°C:



