4.5 boxes of nails are required for finishing 2 tables
Step-by-step explanation:
Given:
3.4 boxes of nails are required for finishing 1.5 tables
Required:
How much boxes of nails would he use for finishing 2 tables
Solution:
We can solve using Unitary Method:
Nails needed to finish 1.5 tables = 3.4 boxes
Nails needed to finish 1 table = 
Nails needed to finish 2 tables = 
So, 4.5 boxes of nails are required for finishing 2 tables.
Keywords: Word Problems
Learn more about Word Problems at:
#learnwithBrainly
Answer:
See Below.
Step-by-step explanation:
We are given that:

Where <em>I₀</em> and <em>k</em> are constants.
And we want to prove that:

From the original equation, take the derivative of both sides with respect to <em>t</em>. Hence:
![\displaystyle \frac{d}{dt}\left[I\right] = \frac{d}{dt}\left[I_0e^{-kt}\right]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdt%7D%5Cleft%5BI%5Cright%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdt%7D%5Cleft%5BI_0e%5E%7B-kt%7D%5Cright%5D)
Differentiate. Since <em>I₀ </em>is a constant:
![\displaystyle \frac{dI}{dt} = I_0\left(\frac{d}{dt}\left[ e^{-kt}\right]\right)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7BdI%7D%7Bdt%7D%20%3D%20I_0%5Cleft%28%5Cfrac%7Bd%7D%7Bdt%7D%5Cleft%5B%20e%5E%7B-kt%7D%5Cright%5D%5Cright%29)
Using the chain rule:

We have:

Substitute:

Distribute and simplify:

Hence proven.
4(8 + 3x)
4(8) + 4(3x)
32 + 12x
Answer:
your answer will be 42.857143%
4(4x^2+4x +1)
4(2x+1)(2x+1)
the answer to the question