Answer:
Janet stops parking in handicapped spaces after she gets a big parking ticket. - Positive Punishment
Peter’s recess is taken away to discourage him from getting into fights with the other children. - Negative Punishment
Ted increases paying his bills on time to avoid a late fee. - Negative Reinforcement
Sally increases the amount of work she completes to receive more pay. - Positive Reinforcement
Explanation:
In operant conditioning, the main principle is that behavior increases or decreases its frequency depending on whether it's reinforced or punished. A behavior can be reinforced by giving something the subject appreciates, like more pay for their work (positive reinforcement) or taking away something they dislike, like late fees (negative reinforcement). Punishments work the same way, you can give something the subject dislikes, like a parking ticket, (positive punishment) or taking away something they like recess for a child. (negative punishment).
Answer:
C. There is a net horizontal force on the skier in the direction the boat’s velocity.
Explanation:
This is because, according to Newton's First law of motion, when an object which in this case is the skier tends to be in equilibrium because it travels at a constant velocity, there is no net acceleration of the skier, and this causes the net force on the skier to be equal to zero.
Therefore in this question, option C which states that "There is a net horizontal force on the skier in the direction the boat’s velocity" is a false statement.
Answer:
The answer to your question is given below
Explanation:
From the question given above, we can see that the wave with a higher frequency has a shorter wavelength while that with a lower frequency has a longer wavelength. This is so because the frequency and wavelength of a wave has inverse relationship. This can further be explained by using the following formula:
Velocity = wavelength x frequency
Divide both side by wavelength
Frequency = Velocity /wavelength
Keeping the velocity constant, we have:
Frequency ∝ 1 / wavelength
From the above illustration, we can see clearly that the frequency and wavelength are in inverse relationship. This implies that the higher the frequency, the shorter the wavelength and the shorter the frequency, the higher the wavelength.
Answer:
W = 7.06 J
Explanation:
From the given information the spring constant 'k' can be calculated using the Hooke's Law.

Now, using this spring constant the additional work required by F to stretch the spring can be found.
The work energy theorem tells us that the work done on the spring is equal to the change in the energy. Therefore,
![W = U_2 - U_1\\W = \frac{1}{2}kx_2^2 - \frac{1}{2}kx_1^2 = \frac{1}{2}(275.13)[0.29^2 - 0.18^2] = 7.06~J](https://tex.z-dn.net/?f=W%20%3D%20U_2%20-%20U_1%5C%5CW%20%3D%20%5Cfrac%7B1%7D%7B2%7Dkx_2%5E2%20-%20%5Cfrac%7B1%7D%7B2%7Dkx_1%5E2%20%3D%20%5Cfrac%7B1%7D%7B2%7D%28275.13%29%5B0.29%5E2%20-%200.18%5E2%5D%20%3D%207.06~J)
It has 52 Protons and 73 Neutrons