1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Assoli18 [71]
3 years ago
5

A 0.59 kg bullfrog is sitting at rest on a level log. how large is the normal force of the log on the bullfrog?

Physics
1 answer:
ladessa [460]3 years ago
7 0
<span>The bullfrog is sitting at rest on the log. The force of gravity pulls down on the bullfrog. We can find the weight of the bullfrog due to the force of gravity. weight = mg = (0.59 kg) x (9.80 m/s^2) weight = 5.782 N The bullfrog is pressing down on the log with a force of 5.782 newtons. Newton's third law tells us that the log must be pushing up on the bullfrog with a force of the same magnitude. Therefore, the normal force of the log on the bullfrog is 5.782 N</span>
You might be interested in
What object best represents a true scale model of the shape of earth?
BabaBlast [244]
Any object that is spherical in shape would best represent a true scale model of the shape of the Earth. Examples are ping pong balls, billiard balls, marble and other smooth spherical objects. The shape of the Earth is called the oblate spheroid. The "oblate" would refer to an oblong shape and "spheroid" would refer to an almost spherical shape. The earth has on almost spherical shape and has a slightly oblong appearance. The diameter from the South pole to the north pole was measured to have a value of 12714 km while the diameter of the equator is approximately 12756 km. As you can see, the values are not equal. This makes the earth not a perfect sphere.
6 0
3 years ago
What is the correct definition of a fracture?
MA_775_DIABLO [31]

The correct definition of a fracture is break in the bone

<u>Explanation:</u>

When nay injury results in the breaking or causing any cracking in the bones of any parts then this will lead to fracture. When the injury caused is near the ligament or tissue in which the bone is connected or attached then it will lead to an avulsion fractures. Thus this will lead to the pulling of bone form the original position thereby leading more pain in the spot associated with the fracture.

Sports people are the victims of this type of fracture. Fracture may occur anywhere mostly legs,hands,ankle,hip and elbow. sometimes it may be in finger, shoulder,knee,etc. The main symptoms that are associated with fracture includes, selling, inability in moving the fractured part or pain associated when trying to move that part, Loss of the affected part's function,etc.

4 0
3 years ago
Show solution for # 4
velikii [3]
M1 = 750Kg, v1 = 10m/s
m2 = 2500Kg , v2= 0 (because in problem say cuz that object don t move).

The momentum before colision is equal with the momentum after colision:

m1v1 + m2v2 = (m1+m2)v3 => v3 is the velocity after colison and that s u want to caluclate for your problem

=> m1v1 = (m1+m2)v3 => v3 = m1v1/(m1+m2) now u should do the math i think v3 prox 2,4 but not sure u should caculate
7 0
3 years ago
Which best describes the electric field created by a positive charge?
Vlad [161]
Its rays point away from the charge
3 0
3 years ago
Read 2 more answers
LOTS OF POINTSA rocket of mass 40 000 kg takes off and flies to a height of 2.5 km as its engines produce 500 000 N of thrust.
Svetradugi [14.3K]

Answer:

i) E = 269 [MJ]    ii)v = 116 [m/s]

Explanation:

This is a problem that encompasses the work and principle of energy conservation.

In this way, we establish the equation for the principle of conservation and energy.

i)

E_{k1}+W_{1-2}=E_{k2}\\where:\\E_{k1}= kinetic energy at moment 1\\W_{1-2}= work between moments 1 and 2.\\E_{k2}= kinetic energy at moment 2.

W_{1-2}= (F*d) - (m*g*h)\\W_{1-2}=(500000*2.5*10^3)-(40000*9.81*2.5*10^3)\\W_{1-2}= 269*10^6[J] or 269 [MJ]

At that point the speed 1 is equal to zero, since the maximum height achieved was 2.5 [km]. So this calculated work corresponds to the energy of the rocket.

Er = 269*10^6[J]

ii ) With the energy calculated at the previous point, we can calculate the speed developed.

E_{k2}=0.5*m*v^2\\269*10^6=0.5*40000*v^2\\v=\sqrt{\frac{269*10^6}{0.5*40000} }\\ v=116[m/s]

8 0
3 years ago
Other questions:
  • A circuit has a voltage drop of 120 V across an 80 resistor that carries a current of 0.75 A. How much power is used by the resi
    7·1 answer
  • A runner runs 10 miles in 1 hour. how far could they run in 2 hours in m/s?
    12·1 answer
  • What causes electric current in a wire
    7·1 answer
  • What physics concept underlies these three observations? When passing an oncoming truck on the highway, your car tends to sway t
    6·1 answer
  • Why is gas able to flow? a its particles have melted and can move around b its particles have high viscosity and can move around
    5·1 answer
  • A researcher is interested in exploring the effects of exposure to ultraviolet light on people’s emotional state. He divides his
    8·1 answer
  • A 35.0-cm-diameter circular loop is rotated in a uniform electric field until the position of maximum electric flux is found. Th
    5·1 answer
  • Find the time taken for the journey of a car which covers a distance of 2000m in 5 m/s
    13·1 answer
  • Help me do this question ​
    13·1 answer
  • Is a neutron positive ornegative
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!