Answer:
The angular velocity is 
Explanation:
From the question we are told that
The mass of each astronauts is 
The initial distance between the two astronauts 
Generally the radius is mathematically represented as 
The initial angular velocity is 
The distance between the two astronauts after the rope is pulled is 
Generally the radius is mathematically represented as 
Generally from the law of angular momentum conservation we have that

Here
is the initial moment of inertia of the first astronauts which is equal to
the initial moment of inertia of the second astronauts So

Also
is the initial angular velocity of the first astronauts which is equal to
the initial angular velocity of the second astronauts So

Here
is the final moment of inertia of the first astronauts which is equal to
the final moment of inertia of the second astronauts So

Also
is the final angular velocity of the first astronauts which is equal to
the final angular velocity of the second astronauts So

So

=> 
=> 
=> 
=> 
Answer:
The energy that the truck lose to air resistance per hour is 87.47MJ
Explanation:
To solve this exercise it is necessary to compile the concepts of kinetic energy because of the drag force given in aerodynamic bodies. According to the theory we know that the drag force is defined by

Our values are:




Replacing,


We need calculate now the energy lost through a time T, then,

But we know that d is equal to

Where
v is the velocity and t the time. However the time is given in seconds but for this problem we need the time in hours, so,

(per hour)
Therefore the energy that the truck lose to air resistance per hour is 87.47MJ
Every person is different. But for a planet-wide overall average that roughly represents all human beings on Earth, the figures usually used are:
from 20 Hz to 20,000 Hz .
The distance travel is 69.5 meters.
<u>Explanation:</u>
Given datas are as follows
Speed = 27.8 meters / second
Time = 2.5 seconds
The formula to calculate the speed using distance and time is
Speed = Distance ÷ Time (units)
Then Distance = Speed × Time (units)
Distance = (27.8 × 2.5) meters
Distance = 69.50 meters
Therefore the distance travelled is 69.50 meters.
It’s both a solid and a liquid. It can thicken and soften depending on how it’s handled. It can be used to cover wounds to stop bleed, and used to drown enemies. Bungee Gum has the properties of both rubber and gum.