Answer:
very small solid particles called interstellar dust.
Explanation:
In the space between the stars there is gas and dust, which represent at least 20% of the mass of our galaxy. In the Milky Way it is considered that there is a gas density of approximately 0.2 to 0.5 atoms / cm3 in the surroundings of the Sun; with respect to the dust an average of 1 g / cm3 is estimated.
Gas is about atoms and molecules, mainly hydrogen; In order of abundance, helium, carbon, oxygen, nitrogen and iron follow. On the other hand, the dust is tiny particles, generally smaller than 10 microns; the dust does not shine and therefore it is only distinguished when it is projected on bright regions (nebulae or clusters).
Interstellar matter is mainly concentrated towards the plane of the galaxy, in the strip corresponding to the Milky Way; there you can see bright nebulas of diffuse character called nebulas. These nebulae are classified according to three types: (a) bright or emission nebulae, (b) reflection nebulae and (c) planetary nebulae.
Hydrogen appears both ionized and neutral; The bright nebulae are composed of ionized hydrogen and other ionized elements. Non-ionized (neutral) hydrogen is found in the spiral arms of the Milky Way and can be detected through radio waves.
Answer:
Its heat capacity is higher than that of any other liquid or solid, its specific heat being 1 cal / g, this means that to raise the temperature of 1 g of water by 1 ° C it is necessary to provide an amount of heat equal to a calorie . Therefore, the heat capacity of 1 g of water is equal to 1 cal / K.
Explanation:
The water has a very high heat capacity, a large amount of heat is necessary to raise its temperature 1.0 ° K. For biological systems this is very important because the cellular temperature is modified very little in response to metabolism. In the same way, aquatic organisms, if water did not possess that quality, would be very affected or would not exist.
This means that a body of water can absorb or release large amounts of heat, with little temperature change, which has a great influence on the weather (large bodies of water in the oceans take longer to heat and cool than the ground land). Its latent heats of vaporization and fusion (540 and 80 cal / g, respectively) are also exceptionally high.
A substance changes from liquid to gas
Answer:
Magnets come in a variety of shapes and one of the more common is the horseshoe (U) magnet. The horseshoe magnet has north and south poles just like a bar magnet but the magnet is curved so the poles lie in the same plane. The magnetic lines of force flow from pole to pole just like in the bar magnet.
<span>A message needs to be traveled to mars from earth.
Distance between Earth and Mars (given) s = 400 million km
Speed of light = 3.00—10^5 km/ sec
We know Velocity = distance / time => time = distance / velocity
Time taken t = 400 million km / 3.00—10^5 = 400 x 10^6 / 3 x 10^5 = 1333.3 sec
Time taken t = 22 min</span>