Answer:
Robotic arms used aboard the ISS are now used in delicate surgeries on Earth.
Explanation:
The ISS allows users to address hardware product development gaps, advanced manufacturing, and emerging technology proliferation. Microgravity-enabled material production capabilities and advanced manufacturing facilities are demonstrating scientific and commercial merit for Earth benefit
Answer:
The kinetic energy of the merry-go-round is
.
Explanation:
Given:
Weight of the merry-go-round, 
Radius of the merry-go-round, 
the force on the merry-go-round, 
Acceleration due to gravity, 
Time given, 
Mass of the merry-go-round is given by

Moment of inertial of the merry-go-round is given by

Torque on the merry-go-round is given by

The angular acceleration is given by

The angular velocity is given by

The kinetic energy of the merry-go-round is given by

What kind of the question is that. We aren't really buried. We either go to Heaven or the other place. Some people say it's over when your buried in the ground but believers don't really think that.
Answer:
Approximately 1.62 × 10⁻⁴ V.
Explanation:
The average EMF in the coil is equal to
,
Why does this formula work?
By Faraday's Law of Induction, the EMF
induced in a coil (one loop) is equal to the rate of change in the magnetic flux
through the coil.
.
Finding the average EMF in the coil is similar to finding the average velocity.
.
However, by the Fundamental Theorem of Calculus, integration reverts the action of differentiation. That is:
.
Hence the equation
.
Note that information about the constant term in the original function will be lost. However, since this integral is a definite one, the constant term in
won't matter.
Apply this formula to this question. Note that
, the magnetic flux through the coil, can be calculated with the equation
.
For this question,
is the strength of the magnetic field.
is the area of the coil.
is the number of loops in the coil.
is the angle between the field lines and the coil. - At
, the field lines are parallel to the coil,
. - At
, the field lines are perpendicular to the coil,
.
Initial flux:
.
Final flux:
.
Average EMF, which is the same as the average rate of change in flux:
.
The partial pressure of the O2 is 36.3 kiloPascal when the air pressure in the mask is 110 kiloPascal based on the isotherm relation. This problem can be solved by using the isotherm relation equation which stated as Vx/Vtot = px/ptot, where V represents volume, p represents the pressure, x represents the partial gas, and tot represents the total gas<span>. Calculation: 33/100 = px/110 --> px = 36.3</span>