We are asked to solve and determine the magnitude of the current flowing through the first device. In order for us to have a better understanding of the problem, we can refer to the attached picture which contains electric circuit diagram. Since it the problem we are already given with an electromotive source or the voltage supply and since the two resistance is in parallel, it would clearly mean that the voltage drop in each resistance is just the same. The resistance 1 uses the 40 volts at the same time the resistance 2 uses 40 volts also. Solving further for the current, we can apply Ohm's law which V = IR where "V" represents the voltage, the "I" represents the current and "R" represents the resistance.
Such as the solution in obtaining current is shown below:
I = V / R, substitute values we have it
I = 40 volts / 1208 ohms
I = 0.0331 Amperes
Therefore, the current flowing in the first device is
0.033 Amperes or 33 milliAmperes.
Answer:
ΔP.E = 6.48 x 10⁸ J
Explanation:
First we need to calculate the acceleration due to gravity on the surface of moon:
g = GM/R²
where,
g = acceleration due to gravity on the surface of moon = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
M = Mass of moon = 7.36 x 10²² kg
R = Radius of Moon = 1740 km = 1.74 x 10⁶ m
Therefore,
g = (6.67 x 10⁻¹¹ N.m²/kg²)(7.36 x 10²² kg)/(1.74 x 10⁶ m)²
g = 2.82 m/s²
now the change in gravitational potential energy of rocket is calculated by:
ΔP.E = mgΔh
where,
ΔP.E = Change in Gravitational Potential Energy = ?
m = mass of rocket = 1090 kg
Δh = altitude = 211 km = 2.11 x 10⁵ m
Therefore,
ΔP.E = (1090 kg)(2.82 m/s²)(2.11 x 10⁵ m)
<u>ΔP.E = 6.48 x 10⁸ J</u>
I am sorry if it didn't helped
answers;
Calculate the buoyant force of a piece of cork of 8cm3 that floats in water. Density of cork is 207kg/m3. ?
I need the mass, in order to get the volume to apply t to the Buoyancy formula of: B=(W)object=(m)object(g)
Explanation:
From Archimedes Principle, any object partially or totally submerged in a fluid is buoyed upwards with a force equal to the weight of the displaced fluid.
∴
B
=
ρ
f
l
V
f
l
g
=
1000
k
g
/
m
3
×
8
×
10
−
6
m
3
×
9
,
8
m
/
s
2
=
0
,
0784
N
(assuming the density of water is at standard temperature and pressure, and that the cork is totally submerged as it floats in the water
it's not the answer of your question ⁉️ but it is similar ........
<span>Even in space, there is still presence of gravity. The
cause of weightlessness is not how far above the earth the space shuttle is but
rather how fast it is travelling. The shuttle is in free fall causing
weightlessness, but it is travelling fast enough to miss the earth as it falls.
Similarly, the airplane could also provide weightlessness if it went free fall
as well. However, that ends as the plane hits the ground. </span>
Answer:
16 kg
Explanation:
M - container
m - oil mass
by definition of density ,
relative density is the ratio of the density of a substance to the density of water.
relative density = density/ density of water
density of oil = 1.2*1000 kgm⁻³ = 1200 kgm⁻³
1 Litre =10⁻³ m³
oil volume = 80 *10⁻³ m³
mass of oil = density * volume
= 1200*80*10⁻³
= 96 kg
Mass of container + mass of oil =112
mass of container = 112 - 96
= 16 kg