Answer:
The tension in the cable when the craft was being lowered to the seafloor is 4700 N.
Explanation:
Given that,
When the craft was stationary, the tension in the cable was 6500 N.
When the craft was lowered or raised at a steady rate, the motion through the water added an 1800 N.
The drag force of 1800 N will act in the upward direction. As it was lowered or raised at a steady rate, so its acceleration is 0. As a result, net force is 0. So,
T + F = W
Here, T is tension
F = 1800 N
W = 6500 N
Tension becomes :

So, the tension in the cable when the craft was being lowered to the seafloor is 4700 N.
Answer:
Secondary voltage on second transformer is 200 volt.
Explanation:
It is given two transformer
Let us consider first transformer.
Number of turns in primary 
Numb er of turns in secondary 
Now consider second transformer
Number of turns in primary 
Number of turns in secondary 
Now it is given that same voltage of 50 volt is applied to primary of both the transformer.
For second transformer



So secondary voltage on second transformer is 200 volt
Did you ever figure it out, bc now I need it lol.
Answer:
heat energy
Explanation:
Friction causes the molecules on rubbing surfaces to move faster, so they have more energy. This gives them a higher temperature, and they feel warmer.
We use the binomial theorem to answer this question. Suppose we have a trinomial (a + b)ⁿ, we can determine any term to be:
[n!/(n-r)!r!] a^(r) b^(n-r)
a.) For x⁵y³, the variables are: x=a and y=b. We already know the exponents of the variables. So, we equate this with the form of the binomial theorem.
r = 5
n - r = 3
Solving for n,
n = 3 + 5 = 8
Therefore, the coefficient is equal to:
Coefficient = n!/(n-r)!r! = 8!/(8-5)!8! = 56
b.) For x³y⁵, the variables are: x=a and y=b. We already know the exponents of the variables. So, we equate this with the form of the binomial theorem.
r = 3
n - r = 5
Solving for n,
n = 5 + 3 = 8
Therefore, the coefficient is equal to:
Coefficient = n!/(n-r)!r! = 8!/(8-3)!8! = 56