Answer:
The person is on the Moon having a weight of 500 N. The acceleration of gravity on the Moon is approximately 1.6 m/s2. What is your his, which includes his space suit?
f= Force (of gravity)=500N
g=acceleration of gravity=1.6m/s^2
m=mass=312kg
m=f/a= 500N/1.6 m/s^2 = 500 (kg-m/1.6m/s^2) = 500/1.6kg = 312kg
his mass is 312kg
Explanation:
By Hooke's Law,
F=kx
The only force acting here is weight, and x is the extension of the string (you need to convert this to mm) so
mg=kx
(0.15)(9.81)=k ((420-300)x10^-3)
Then just solve this equation.
Answer:
70 revolutions
Explanation:
We can start by the time it takes for the driver to come from 22.8m/s to full rest:

The tire angular velocity before stopping is:

Also its angular decceleration:

Using the following equation motion we can findout the angle it makes during the deceleration:

where
= 0 m/s is the final angular velocity of the car when it stops,
= 114rad/s is the initial angular velocity of the car
= 14.75 rad/s2 is the deceleration of the can, and
is the angular distance traveled, which we care looking for:

or 440/2π = 70 revelutions
Solution:
54 / 9 = 6 boxes.