Answer:
Explanation:
Given parameters:
pH = 3.50
Unknown:
concentration of [H₃0⁺] = ?
concentration of [OH⁻] = ?
Solution:
In order to find the unknown, we use some simple expressions which best explains the pH scale and the equilibrium systems of aqueous solutions.
pH = -log₁₀[H₃O⁺]
[H₃O⁺] = inverse log₁₀ (-pH) =
= 
[H₃O⁺] = 3.2 x 10⁻⁴moldm⁻³
For the [OH⁻]:
we use : pOH = -log₁₀ [OH⁻]
Recall: pOH + pH = 14
pOH = 14 - pH = 14 - 3.5 = 10.5
Now we plug the value of pOH into pOH = -log₁₀ [OH⁻]
[OH⁻] = 
[OH⁻] =
= 3.2 x 10⁻¹¹moldm⁻³
The solution is acidic as the concentration of H₃0⁺ is more than that of the OH⁻ ions.
Answer:
NADH is formed
Explanation:
If oxygen exists in the system, pyruvate goes into mitochondrial matrix in order to perform kreb's cycle and forms NADH
Otherwise, pyruvate forms into lactate acid.
Good luck on your final exam
Answer:
648.5 mL
Explanation:
Here we will assume that the pressure of the gas is constant, since it is not given or specified.
Therefore, we can use Charle's law, which states that:
"For an ideal gas kept at constant pressure, the volume of the gas is proportional to its absolute temperature"
Mathematically:

where
V is the volume of the gas
T is its absolute temperature
The equation can be rewritten as

where in this problem we have:
is the initial volume of the gas
is the initial temperature
is the final temperature
Solving for V2, we find the final volume of the gas:

It would be C because It will have a lower activation energy than Trial A.