I'm pretty sure it's 9726 milligrams of iodine. Hope this helps.
Answer:
∆H > 0
∆Srxn <0
∆G >0
∆Suniverse <0
Explanation:
We are informed that the reaction is endothermic. An endothermic reaction is one in which energy is absorbed hence ∆H is positive at all temperatures.
Similarly, absorption of energy leads to a decrease in entropy of the reaction system. Hence the change in entropy of the reaction ∆Sreaction is negative at all temperatures.
The change in free energy for the reaction is positive at all temperatures since ∆S reaction is negative then from ∆G= ∆H - T∆S, we see that given the positive value of ∆H, ∆G must always return a positive value at all temperatures.
Since entropy of the surrounding= - ∆H/T, given that ∆H is positive, ∆S surrounding will be negative at all temperatures. This is so because an endothermic reaction causes the surrounding to cool down.
The value of equilibrium constant is equal to the quotient of the products raised to its stoichiometric coefficient over the reaction's reactants raised to its respective stoichiometric coeff. The equation is Kc=[SO2][Cl2]/[SO2Cl2]= [1.3*10^-2][1.3*10^-2]/[2.2*10^-2-<span>1.3*10^-2]=0.0188. The final answer is Kc=0.0188.</span>
Answer:
Volume = 45.62L
Explanation:
Data;
V1 = 54.9L
T1 = 64°C = (64 + 273.15)k = 337.15K
T2 = 7°C = (7 + 273.15)k = 280.15K
V2 = ?
From Charles law,
The volume of a fixed mass of gas is directly proportional to its temperature provided that pressure remains constant
V = KT, K = V / T = V1 / T1 = V2 / T2 = V3 / T3 =.........= Vn / Tn
(54.9 / 337.15) = (V2 / 280.15)
V2 = (54.9 * 280.15) / 337.15
V2 = 45.618L
V2 = 45.62L