Explanation:
Hi Linda,
How's it going?
Sorry I haven't been in touch for such a long time but I've had exams so I've been studying every free minute. Anyway, I'd love to hear all your news and I'm hoping we can get together soon to catch up. We just moved to a bigger flat so maybe you can come and visit one weekend?
How's the new job?
Looking forward to hearing from you!
Helga
<h2>Reffer the attachment </h2>
Mark as brainlist ❤️❤️
Answer:
A. kinetic energy
B. angular velocity
E. angular position
Explanation:
The quantities that cannot be constant if a constant net torque is exerted on an objecta are:
A. Kinetic energy. If a torque is applied, the linear or angular speed will be changing at a rate proportional to the torque, so the kinetic energy will change too.
B. Angular velocity. It will change at a rate equal to the torque.
C. Angular position. If the angular velocity changes, the angular position will change.
Answer:
2.56 m/s²
Explanation:
A standing wave is produced in the wire, its frequency f = n/2l√(T/μ). For the fundamental frequency, n = 1.
f = 1/2l√(T/μ)
where l = length of wire = 1.60 m, T₁ = tension in wire = weight of object = m₁g (neglecting wires mass), m₁ = mass of object = 3.00 kg, g = acceleration due to gravity on the small planet, μ = linear density of wire = m₀/l , m₀= mass of wire = 4.30 g = 0.0043 kg and f = 1/T where T = period of pulse = 59.9 ms = 0.0599 s
f = 1/2l√(T₀/μ) = 1/T ⇒ T₁ = 4l²μ/T²
m₁g = 4l²μ/T²
g = 4l²μ/m₁T² = 4l²m₀/l/m₁T² = 4lm₀/m₁T²
g = 4lm₀/m₁T² = 4 × 1.60 × 0.0043/(3.00 × 0.0599²) = 2.56 m/s²
The velocity curve is such in which the x-axis is the velocity and the y is the time. The distance traveled by the object is calculated by multiplying velocity and time. Thus, in the velocity curve, the distance can be easily calculated if we know where to look.