5 a)
Start by arranging the materials by the sonic speed and then their physical state:
- Copper (solid)
- Glass (solid)
- Wood (solid)
- Sea Water (liquid)
- Acetone (liquid)
- Alcohol (liquid)
- Helium (gas)
- Carbon dioxide (gas)
What trend do you identify from these data? Here's what I've got:

5 b)
The way microscopic particles are arranged in a substance helps distinguish between different physical states:
- Particles in a solid are held tightly in place with small separation in between; it's hard for particles in a solid to move past one another; solids therefore have shapes that persists over time.
- Particles in a gas are highly mobile- they keep moving AT ALL TIMES. There are large separations between individual particles and therefore gases tend to show no definite shape or volume.
- The arrangement of particles in a liquid is located somewhere in between that of solids and gases. The exact configuration is dependent on the nature of the liquid- for example, molecules in maple syrup are held way closer to each other than those in distilled water are.
Sound travels as a longitudinal wave. As a sound wave passes through a medium, individual particles become excited and gain energy; as they run into others they transfer their energy to the next particle; the sound wave thus propagate across the medium. With a lower average distance between individual particles this action can proceed at a greater rate in average solids than in average liquids, and in average liquids than in average gases. Hence the trend.
Answer:
We obtain the average velocity instead of the instantaneus velocity.
Explanation:
The problem with calculating speed in this way is that an average speed is being calculated and not an instantaneous speed at a given point.

To calculate the instantaneous speed, a very small space interval must be measured at a given time.
Answer: Option (c) is the correct answer.
Explanation:
An elastic object is defined as the object that is able to retain its shape when a force is applied on it.
For example, when we pull a rubber band then it stretches and when we withdraw the force applied on it then it retain its shape.
As we know that potential energy is the energy obtained by an object due to its position.
So, when we stretch a rubber band then it will have elastic potential energy as position of the rubber band is changing and since, it will retain it shape hence it has elastic potential energy.
Thus, we can conclude that a stretched rubber band has elastic potential energy.
Answer:
Q=it
Explanation:
is the equation equation that links charge flow, current and time.
Here,
Q = Charge
i = current
t = time
uhm i think i don’t understand what it says but i can answer if it was English ! i also tried to translate it but it didn’t help !