Answer:



Explanation:
Notice that this is a circuit with resistors R1 and R2 in parallel, connected to resistor R3 in series. It is what is called a parallel-series combination.
So we first find the equivalent resistance for the two resistors in parallel:

By knowing this, we can estimate the total current through the circuit,:

So approximately 0.17 amps
and therefore, we can estimate the voltage drop (V3) in R3 uisng Ohm's law:

So now we know that the potential drop across the parellel resistors must be:
10 V - 4.28 V = 5.72 V
and with this info, we can calculate the current through R1 using Ohm's Law:

Answer:
See the attached pictures for detailed steps.
Explanation:
I believe that the best statement which explains why you can do this is C. <span>The extension cord is made of copper wire, which is a good conductor of electricity; however, it is covered with plastic, an insulator, which does not allow the electrical current to flow to you.
Copper is known to be one of the best conductors of electricity, and plastic can shield you from shock.
</span>