The air leaving through the balloon's mouth pulls the balloon in the same direction as the exiting air, so the balloon experiences a net force. All air surrounding the balloon pushes the balloon forward.
Answer:
5.1 Personnel Security. ...
5.2 Physical and Environmental Protection. ...
5.3 Production, Input and Output Controls. ...
5.4 Contingency Planning and Disaster Recovery. ...
5.5 System Configuration Management Controls. ...
5.6 Data Integrity / Validation Controls. ...
5.7 Documentation. ...
5.8 Security Awareness and Training.
You can use like a thickish paper but not to heavy and do it spiral and fall it with bubble paper and light things and then you spin it while you drop and it won’t crack
The rotor is situated inside the stator and is mounted on the AC motor's shaft. It is the rotating part of the AC motor. And while we know this, the major function of the rotor and the stator is helping the motor shaft rotate.
Answer:
The temperature of the first exit (feed to water heater) is at 330.15ºC. The second exit (exit of the turbine) is at 141ºC. The turbine Power output (if efficiency is %100) is 3165.46 KW
Explanation:
If we are talking of a steam turbine, the work done by the steam is done in an adiabatic process. To determine the temperature of the 2 exits, we have to find at which temperature of the steam with 1000KPa and 200KPa we have the same entropy of the steam entrance.
In this case for steam at 3000 kPa, 500°C, s= 7.2345Kj/kg K. i=3456.18 KJ/Kg
For steam at 1000 kPa and s= 7.2345Kj/kg K → T= 330.15ºC i=3116.48KJ/Kg
For steam at 200 kPa and s= 7.2345Kj/kg K → T= 141ºC i=2749.74KJ/Kg
For the power output, we have to multiply the steam flow with the enthalpic jump.
The addition of the 2 jumps is the total power output.