Answer:
I hope following attachment will help you a lot!
Explanation:
Answer:
Mechanical resonance frequency is the frequency of a system to react sharply when the frequency of oscillation is equal to its resonant frequency (natural frequency).
The physical dimension of the silicon is 10kg
Explanation:
Using the formular, Force, F = 1/2π√k/m
At resonance, spring constant, k = mw² ( where w = 2πf), when spring constant, k = centripetal force ( F = mw²r).
Hence, F = 1/2π√mw²/m = f ( f = frequency)
∴ f = F = mg, taking g = 9.8 m/s²
100 Hz = 9.8 m/s² X m
m = 100/9.8 = 10.2kg
Answer:
The frequency that the sampling system will generate in its output is 70 Hz
Explanation:
Given;
F = 190 Hz
Fs = 120 Hz
Output Frequency = F - nFs
When n = 1
Output Frequency = 190 - 120 = 70 Hz
Therefore, if a system samples a sinusoid of frequency 190 Hz at a rate of 120 Hz and writes the sampled signal to its output without further modification, the frequency that the sampling system will generate in its output is 70 Hz
Answer:
d. 2.3 ohms (5.3 amperes)
Explanation:
The calculator's 1/x key makes it convenient to calculate parallel resistance.
Req = 1/(1/4 +1/8 +1/16) = 1/(7/16) = 16/7 ≈ 2.3 ohms
This corresponds to answer choice D.
__
<em>Additional comment</em>
This problem statement does not tell the applied voltage. The answer choices suggest that it is 12 V. If so, the current is 12/(16/7) = 21/4 = 5.25 amperes.