False.
The force of friction is always the direction opposite of the object's movement.
A ball falling through the air has a mass, a density, a volume...it is facing air resistance and is being acted on by gravity...it is accelerating and gaining velocity...and it is increasing in kinetic energy.
I suppose out of all those the biggest thing the ball has in this case is ENERGY. There are two main types to focus on...
Kinetic Energy - The further the ball fall the more KE it has...until terminal velocity is reach, then KE would become constant.
Potential Energy - Conversely to that of KE, the further the ball falls the less PE it will have.
<em>Heat/Thermal Energy is technically also present due to the friction from the air resistance, but the transfer of energy between the air and ball is quite complex and not necessary important for basic physics.
</em>
The question itself seem kind of vague and open ended, but I could just be viewing it the wrong way.
Comment if you need more help!
The the object that has the less mass will travel faster because let’s say for example the first object has the mass of M and the second object has the mass of 2M and if the momentum is equal so that means that we could divide M with M and we would get V1=2V2 (being V1 the velocity of the first mass and V2 the velocity of the second one) I hope I helped you out.
The time elapsed when the vehicles are closest to each other is 20 min.
The given parameters:
- Speed of the truck, u = 80 km/h
- Distance, d = 32 km
- Speed of the car, v = 50 km/h
<h3>Principles of relative speed</h3>
The time elapsed when the cars are close to each other is calculated by applying the principles of relative speed.


Thus, the time elapsed when the vehicles are closest to each other is 20 min.
Learn more about relative velocity here: brainly.com/question/24430414