The momentum of block B after the collision is -50 kg m/s.
Explanation:
We can solve this problem by using the principle of conservation of momentum. In fact, the total momentum of the system before and after the collision must be conserved, so we can write:

where:
is the momentum of block A before the collision
is the momentum of block B before the collision
is the momentum of block A after the collision
is the momentum of block B after the collision
Solving for
, we find:

So, the momentum of block B after the collision is -50 kg m/s.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Answer: For what objects? And what data?
Explanation:
1. Sound waves produced by a vibrating object are compressional waves.
2. Loudness is the human perception of sound wave intensity.
3. The process of detecting objects by bouncing sounds off them is called echolocation.
Answer:

Explanation:
From the question we are told that:
Mass m=0.40
Radius r=1.8m
Angle Beneath the Horizontal \theta =40 \textdegree
Speed v=5.0m/s
The Tension Angle


Generally the equation for Tension is is mathematically given by



The answer is number. The statistic is usually a numerical value that we have obtained through the application of different amthematical algorithms to our datasets. Examples of such algorithms include summary measures, the arithmetic mean, the standard deviation, etc. Statistics are used to give us information about our samples and subgroups, whereas parametrs are numerical values that give us infromation about our population values.