<em><u>This</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>can</u></em><em><u> </u></em><em><u>do</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>boy</u></em><em><u> </u></em><em><u>or</u></em><em><u> </u></em><em><u>girl</u></em><em><u> </u></em>
Answer:
two people who are not going to be able to make it to class today because of the day and then I will be there at the house and then we can go
Hello! I can help you with this!
4. For this problem, we have to write and solve a proportion. We would set this proportion up as 12/15 = 8/x. This is because we're looking for the length of the shadow and we know the height of the items, so we line them up horizontally and x goes with 8, because we're looking for the shadow length. Let's cross multiply the values. 15 * 8 = 120. 12 * x = 12. You get 120 = 12x. Now, we must divide each side by 12 to isolate the "x". 120/12 is 10. x = 10. There. The cardboard box casts a shadow that is 10 ft long.
5. For this question, you do the same thing. This time, you're finding the height of the tower, so you would do 1.2/0.6 = x/7. Cross multiply the values in order to get 8.4 = 0.6x. Now, divide each side by 0.6x to isolate the "x". 8.4/0.6 is 14. x = 14. There. The tower is 14 m tall.
If you need more help on proportions and using proportions in real life situations, feel free to search on the internet to find more information about how you solve them.
the equation of the tangent line must be passed on a point A (a,b) and
perpendicular to the radius of the circle. <span>
I will take an example for a clear explanation:
let x² + y² = 4 is the equation of the circle,
its center is C(0,0). And we assume that the tangent line passes to the point
A(2.3).
</span>since the tangent passes to the A(2,3), the line must be perpendicular to the radius of the circle.
<span>Let's find the equation of the line parallel to the radius.</span>
<span>The line passes to the A(2,3) and C (0,0). y= ax+b is the standard form of the equation. AC(-2, -3) is a vector parallel to CM(x, y).</span>
det(AC, CM)= -2y +3x =0, is the equation of the line // to the radius.
let's find the equation of the line perpendicular to this previous line.
let M a point which lies on the line. so MA.AC=0 (scalar product),
it is (2-x, 3-y) . (-2, -3)= -4+4x + -9+3y=4x +3y -13=0 is the equation of tangent