Picture #1:
GPE = (mass) x (gravity) x (height)
GPE = (2 kg) x (9.8 m/s²) x (40 m) = 784 joules
KE = (1/2) (mass) (speed²)
KE = (1/2) (2 kg) (5 m/s)²
KE = (1 kg) (25 m²/s²) = 25 joules
Picture #2:
KE = (1/2) (mass) (speed²)
KE = (1/2) (2 kg) (10 m/s)²
KE = (1 kg) (100 m²/s²) = 100 joules
Picture #3:
GPE = (mass) x (gravity) x (height)
GPE = (20 kg) x (9.8 m/s²) x (2 m) = 392 joules
KE = (1/2) (mass) (speed²)
KE = (1/2) (20 kg) (5 m/s)²
KE = (10 kg) (25 m²/s²) = 250 joules
Picture #4:
GPE = (mass) x (gravity) x (height)
98 joules = (1 kg) x (9.8 m/s²) x (height)
Height = (98 joules) / (1 kg x 9.8 m/s²)
Height = 10 meters
Picture #5:
GPE = (mass) x (gravity) x (height)
39,200 Joules = (mass) x (9.8 m/s²) x (20 m)
Mass = (39,200 joules) / (9.8 m/s² x 20 m)
Mass = 200 kg
There are longitudinal and transverse. Both types of mechanical waves require a medium, transport energy, and have defined wavelengths, frequencies, and speeds.
Differences are that transverse waves oscillate along a direction perpendicular to the direction of travel (like shaking a rope up and down). Longitudinal waves like oscillations along a spring and sound waves, oscillate back and forth along the direction of travel.
Answer:
C. microscope
Explanation:
A simple microscope is magnifying glass, an ordinary double convex lens having a short focal length that produces virtual and erect image.
Answer:
<em>The speed of the stream of air flowing through the leak is 340.754 m/sec</em>
Explanation:
Carefully applying the Bernoulli's equation the speed of the leak can be obtained. The attached images show step by step explanation of the question, while applying the Bernoulli's equation;
Jaydbrbstgsbwiybsbdd to nebsndhbd