Answer:
Molarity is a sort of concentration for solutions. When you talk about it, means mols of solute, that are in 1000 ml of solution. The molarity at this is 0.57M
Explanation:
As you have the solution in a volume of 150ml with 5 g of solute, in 1000 ml how much solute, do u have? The answer is 33.333g so now, you have to take the molar mass of NaCl and get the mols. Mass/molar mass, you will get the moles, so 33,3333 g / 58,44 g/m is 0.570 moles. That's M
1. the amount of heat that it would take would be :
5.1 x 10^4 J
2. I think the substance would be : Iron
3. the amount of heat required would be :
1.13 x 10^4 kJ
Hope this helps
As mentioned above, phosphoric acid has 3 pKa values, and after 3 ionization it gives 3 types of ions at different pKa values:
H₃PO₄(aq)
+ H₂O(l) ⇌ H₃O⁺(aq) + H₂PO₄⁻ (aq) pKₐ₁
<span>
</span>H₂PO₄⁻(aq) + H₂O(l) ⇌ H₃O⁺(aq) + HPO₄²⁻ (aq) pKₐ₂
HPO₄²⁻(aq) + H₂O(l) ⇌ H₃O⁺(aq) + PO₄³⁻ (aq) pKₐ₃
At the highest pKa value (12.4) of phosphoric acid, the last OH group will lose its hydrogen. On the picture I attached, it is shown required protonated form of phosphoric acid before reaction whose pKa value is 12.4.
If it was warn - hot water, i would say yes
the warm - hot water would dissolve because of the temperature
This equation represents a single replacement reaction. Single replacement reactions consist of one element reacting with one compound on the reactant side (left side of the equation) and they form one new element and one new compound on the product side of the equation (right side).