Answer:
Explanation:
A 12.48 g sample of an unknown metal, heated to 99.0 °C was then plunged into 50.0 mL of 25.0 °C water. The temperature of the water rose to 28.1 Go to calculating final temperature when mixing two samples of water ... Problem #1: A 610. g piece of copper tubing is heated to 95.3 °C and placed in an ... The two rings are heated to 65.4 °C and dropped into 12.4 mL of water at 22.3 °C. ... Problem #4: A 5.00 g sample of aluminum (specific heat capacity = 0.89 J g¯1
Answer:
N = n× l
N = number of entities
n= moles
l = Avogadro's constant = 6.023 × 10^23
3.01 × 10^ 23 = n * 6.023 × 10^23
n = 3.01 × 10^23/6.023 × 10^23
n= 0.5moles
Molar mass = mass/ number of moles
Molar mass = 56
mass = 56 × 0.5
= 28g
Hope this helps.
Answer:
hey just where are the rections keep a pic
Explanation:
okay?.........................................
Answer:
Barium has a greater radius than magnesium
Explanation:
Barium and magnesium are two elements which belong to the same group, group 2A. This means that the two elements have two valence electrons in their outer shell.
The difference is, however, since barium is lower in group than magnesium, it has more electron shells than magnesium and, therefore, its radius is greater. The attraction force between the nucleus and the valence electrons in barium is lower as a result, as force is inversely proportional to distance. Hence, a lower amount of energy is required to remove the valence electrons from barium.
Answer:
3.00 mol
Explanation:
Given data:
Mass of P₄ = 211 g
Mass of oxygen = 240 g
Moles of P₂O₅ = ?
Solution:
Chemical equation:
P₄ + 5O₂ → 2P₂O₅
Number of moles of P₄:
Number of moles = mass/ molar mass
Number of moles = 211 g / 123.88 g/mol
Number of moles = 1.7 mol
Number of moles of O₂ :
Number of moles = mass/ molar mass
Number of moles = 240 g / 32g/mol
Number of moles = 7.5 mol
Now we will compare the moles of product with reactant.
O₂ : P₂O₅
5 : 2
7.5 : 2/5×7.5 = 3.00
P₄ : P₂O₅
1 : 2
1.7 : 2×1.7 = 3.4 mol
Oxygen is limiting reactant so the number of moles of P₂O₅ are 3.00 mol.
Mass of P₂O₅:
Mass = number of moles × molar mass
Mass = 3 mol ×283.9 g/mol
Mass = 852 g