Force is calculated F=m×a.
If both ships speed up with the same force, but have a different mass, This means that a also has to be different. If F is the same but ship a has a bigger mass(m) than ship b, then the acceleration(a) of ship b has to be bigger so F of each ship is the same. So the ship with the smaller mass will speed up faster.
Newton's second law of motion:
F=ma

You convert from km/h to m/s by dividing by 3.6:


Then a is:


Then:
F=(980)(2.8)=2744 N
The required value of the index of refraction of glass is 1.5.
Given data:
The speed of light in a vacuum is,
.
The speed of light in a glass is,
.
Light has the tendency to travel from one medium to another, then the difference between the speeds of light in various mediums is determined by a term, known as the index of refraction. The mathematical expression for the index of refraction of glass is,
n = c / v
Solving as

Thus, we can conclude that the required value of the index of refraction of glass is 1.5.
Learn more about the index of refraction here:
brainly.com/question/17156275
Answer:
w = √ 1 / CL
This does not violate energy conservation because the voltage of the power source is equal to the voltage drop in the resistence
Explanation:
This problem refers to electrical circuits, the circuits where this phenomenon occurs are series RLC circuits, where the resistor, the capacitor and the inductance are placed in series.
In these circuits the impedance is
X = √ (R² + (
-
)² )
where Xc and XL is the capacitive and inductive impedance, respectively
X_{C} = 1 / wC
X_{L} = wL
From this expression we can see that for the resonance frequency
X_{C} = X_{L}
the impedance of the circuit is minimal, therefore the current and voltage are maximum and an increase in signal intensity is observed.
This does not violate energy conservation because the voltage of the power source is equal to the voltage drop in the resistence
V = IR
Since the contribution of the two other components is canceled, this occurs for
X_{C} = X_{L}
1 / wC = w L
w = √ 1 / CL