1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bess [88]
3 years ago
11

Potassium is a crucial element for the healthy operation of the human body. Potassium occurs naturally in our environment and th

us our bodies) as three isotopes: Potassium-39, Potassium-40, and Potassium-41. Their current abundances are 93.26%, 0.012% and 6.728%. A typical human body contains about 3.0 grams of Potassium per kilogram of body mass. 1. How much Potassium-40 is present in a person with a mass of 80 kg? 2. If, on average, the decay of Potassium-40 results in 1.10 MeV of energy absorbed, determine the effective dose (in Sieverts) per year due to Potassium-40 in an 80- kg body. Assume an RBE of 1.2. The half-life of Potassium-40 is 1.28 x 10°years.
Physics
1 answer:
Mariulka [41]3 years ago
5 0

Answer:

a) 0.0288 grams

b) 2.6*10^{-10} J/kg

Explanation:

Given that:

A typical human  body contains about 3.0 grams of Potassium per kilogram of body mass

The abundance  for the three isotopes are:

Potassium-39, Potassium-40, and Potassium-41 with abundances are 93.26%, 0.012% and 6.728% respectively.

a)

Thus; a person with a mass of 80 kg will posses = 80 × 3 = 240 grams of potassium.

However, the amount of potassium that is present in such person is :

0.012% × 240 grams

= 0.012/100 × 240 grams

= 0.0288 grams

b)

the effective dose (in Sieverts) per year due to Potassium-40 in an 80- kg body is calculate as follows:

First the Dose in (Gy) = \frac{energy \ absorbed }{mass \ of \ the \ body}

= \frac{1.10*10^6*1.6*10^{-14}}{80}

= 2.2*10^{-10} \ J/kg

Effective dose (Sv) = RBE × Dose in Gy

Effective dose (Sv) =  1.2  *2.2*10^{-10} \ J/kg

Effective dose (Sv) = 2.6*10^{-10} J/kg

 

You might be interested in
A golf ball is hit off a tee at the edge of a cliff. Its x and y coordinates as functions of time are given by x = 18.0t and y =
In-s [12.5K]
Position:                 x = 18t    y = 4t - 4.9t²

First derivative:        x' = 18      y' = 4 - 9.8t

Second derivative:    x'' = 0        y'' = - 9.8


Position vector:      P  =  (18t) i  +  (4t - 4.9t²) j

Velocity vector:      V  =  (18) i  +  (4 - 9.8t) j

Acceleration vector  A  =              (- 9.8) j

6 0
3 years ago
Read 2 more answers
Ted Williams hits a baseball with an initial velocity of 120 miles per hour (176 ft/s) at an angle of θ = 35 degrees to the hori
lys-0071 [83]

Answer: the maximum heigth of the stadium at ist back wall is 151.32 ft

Explanation:

1. use the position (x) equation in parobolic movement to find the time (t)

565 ft = [frac{176 ft}{1 s\\}[/tex] * cos (35°)  * t

t= 3.92 s

2. use the position (y) equation in parabolic movement to find de maximun heigth  the ball reaches at 565 ft from the home plate.

y= [[frac{176 ft}{1 s\\}[/tex] * sen (35°) * 3.92 s] - \frac{32.2 ft/s^{2} *3.92 s^{2}  }{2}

y= 148.32 ft

3. finally add the 3 ft that exist between the home plate and the ball

148.32 ft + 3 ft = 151.32

6 0
3 years ago
A linear accelerator produces a pulsed beam of electrons. The pulse current is 0.50 A, and the pulse duration is 0.10 μs. (a) Ho
Crank

Answer:

a)N = 3.125 * 10¹¹

b) I(avg)  = 2.5 × 10⁻⁵A

c)P(avg) = 1250W

d)P = 2.5 × 10⁷W

Explanation:

Given that,

pulse current is 0.50 A

duration of pulse Δt = 0.1 × 10⁻⁶s

a) The number of particles equal to the amount of charge in a single pulse divided by the charge of a single particles

N = Δq/e

charge is given by Δq = IΔt

so,

N = IΔt / e

N = \frac{(0.5)(0.1 * 10^-^6)}{(1.6 * 10^-^1^9)} \\= 3.125 * 10^1^1

N = 3.125 * 10¹¹

b) Q = nqt

where q is the charge of 1puse

n = number of pulse

the average current is given as I(avg) = Q/t

I(avg) = nq

I(avg) = nIΔt

         = (500)(0.5)(0.1 × 10⁻⁶)

         = 2.5 × 10⁻⁵A

C)  If the electrons are accelerated to an energy of 50 MeV, the acceleration voltage must,

eV = K

V = K/e

the power is given by

P = IV

P(avg) = I(avg)K / e

P(avg) = \frac{(2.5 * 10^-^5)(50 * 10^6 . 1.6 * 10^-^1^9)}{1.6 * 10^-^1^9}

= 1250W

d) Final peak=

P= Ik/e

= = P(avg) = \frac{(0.5)(50 * 10^6 . 1.6 * 10^-^1^9)}{1.6 * 10^-^1^9}\\2.5 * 10^7W

P = 2.5 × 10⁷W

5 0
3 years ago
Read 2 more answers
A stone is dropped from the
ICE Princess25 [194]
  • Height=h=500m
  • Acceleration=g=10m/s^2
  • Initial velocity=u=0
  • Speed of sound=c=340m/s
  • TIME TAKEN BY STONE TO HIT WATER=t
  • Time taken by sound to hear back=T

Now

\\ \sf\longmapsto h=ut+\dfrac{1}{2}gt^2

\\ \sf\longmapsto h=0t+\dfrac{1}{2}10t^2

\\ \sf\longmapsto 500=5t^2

\\ \sf\longmapsto t^2=100

\\ \sf\longmapsto t=10s

Now

\\ \sf\longmapsto h=cT

\\ \sf\longmapsto T=\dfrac{h}{c}

\\ \sf\longmapsto T=\dfrac{500}{340}

\\ \sf\longmapsto T=1.47\approx 1.5s

Total time:-

\\ \sf\longmapsto T_{net}=t+T=10+1.5=11.5s

8 0
2 years ago
What is linear momemtum​
Genrish500 [490]

Answer:

Its momentum thats linear

Explanation:

from my secret analysis i would say this is really linear

7 0
2 years ago
Other questions:
  • an 8.10 kilogram box of mass is kept at a height of 0.99 meters above ground level. what is the potential energy of the box? (gi
    13·2 answers
  • Trolley A has a mass of 2kg and is moving at 2m/s. It collides with trolley B, which has the same mass but is stationary. What i
    9·1 answer
  • What is the acceleration of a 1107 kg car as it comes to rest with a force of 2242 N in 6.9 seconds?
    15·1 answer
  • Which of these is NOT a vector quantity?
    6·1 answer
  • An uncovered pot of soup is simmering on a stove, and there are water droplets on the wall above the back of the stove. what seq
    5·2 answers
  • A juggler throws a bowling pin straight up in the air. After the pin leaves his hand and while it is in the air, which statement
    11·1 answer
  • Your car's 30.0 W headlight and 2.50 kW starter are ordinarily connected in parallel in a 12.0 V system. What power (in W) would
    15·1 answer
  • Someone help I’ll give you Brainly
    11·1 answer
  • Help in physics please. Need asap :(((​
    5·1 answer
  • 3.00 kg block moving 2.09 m/s right hits a 2.22 kg block moving 3.92 m/s left. afterwards, the 3.00 kg block moves 1.71 m/s left
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!