The answer is A ..........
Answer:
160.75 N
Explanation:
The downward velocity has no effect on the force situation, it is only changes in velocity (plus, of course, gravity, which is always there) that require a force. At constant velocity, the bottom spring s_3 is supporting its mass m_3 to balance gravity.
As the elevator slows, though, it also ends up slowing down the spring arrangement, too. However, because the stretching takes time, it means that some damped harmonic motion will be set up in the spring chain.
When the motion has finally damped out, the net force the bottom spring s3 exerts on m3 has two components--that of gravity and of the deceleration of the elevator:
F_3net = m3 * (g + a) = 10.5×(9.81+5.5)= 10.5×15.31= 160.75 N
Answer:
time required after impact for a puck is 2.18 seconds
Explanation:
given data
mass = 30 g = 0.03 kg
diameter = 100 mm = 0.1 m
thick = 0.1 mm = 1 ×
m
dynamic viscosity = 1.75 ×
Ns/m²
air temperature = 15°C
to find out
time required after impact for a puck to lose 10%
solution
we know velocity varies here 0 to v
we consider here initial velocity = v
so final velocity = 0.9v
so change in velocity is du = v
and clearance dy = h
and shear stress acting on surface is here express as
= µ 
so
= µ
............1
put here value
= 1.75×
× 
= 0.175 v
and
area between air and puck is given by
Area =
area =
area = 7.85 ×
m²
so
force on puck is express as
Force = × area
force = 0.175 v × 7.85 × 
force = 1.374 ×
v
and now apply newton second law
force = mass × acceleration
- force = 
- 1.374 ×
v = 
t = 
time = 2.18
so time required after impact for a puck is 2.18 seconds