1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sedbober [7]
2 years ago
10

Myron was trying to light a match. The first time he struck the match, the match did not light. The second time he tried, the ma

tch lit successfully.
Which most likely occurred to make the match light?

Myron increased the friction by decreasing the surface area.
Myron increased the friction by increasing speed.
Myron decreased the friction by making the match aerodynamic.
Myron decreased the friction by lubricating the match.
Physics
2 answers:
Andru [333]2 years ago
8 0

Answer:

B. Myron increased the friction by increasing speed.

Explanation:

i got it correct on edge

Volgvan2 years ago
4 0

Answer:

The answer is B i think

Explanation:

You might be interested in
If a sample emits 2000 counts per second when the detector is 1 meter from the sample, how many counts per second would be obser
Alona [7]

Answer:

<h2><em>6000 counts per second</em></h2>

Explanation:

If a sample emits 2000 counts per second when the detector is 1 meter from the sample, then;

2000 counts per second = 1 meter ... 1

In order to know the number of counts per second that would be observed when the detector is 3 meters from the sample, we will have;

x count per second = 3 meter ... 2

Solving the two expressions simultaneously for x we will have;

2000 counts per second = 1 meter

x counts per second = 3 meter

Cross multiply to get x

2000 * 3 = 1* x

6000 = x

<em></em>

<em>This shows that 6000 counts per second would be observed when the detector is 3 meters from the sample</em>

5 0
3 years ago
Coulomb’s law and static point charge ensembles (15 points). A test charge of 2C is located at point (3, 3, 5) in Cartesian coor
fenix001 [56]

Answer:

a) F_{r}= -583.72MN i + 183.47MN j + 6.05GN k

b) E=3.04 \frac{GN}{C}

Step-by-step explanation.

In order to solve this problem, we mus start by plotting the given points and charges. That will help us visualize the problem better and determine the direction of the forces (see attached picture).

Once we drew the points, we can start calculating the forces:

r_{AP}^{2}=(3-0)^{2}+(3-0)^{2}+(5+0)^{2}

which yields:

r_{AP}^{2}= 43 m^{2}

(I will assume the positions are in meters)

Next, we can make use of the force formula:

F=k_{e}\frac{q_{1}q_{2}}{r^{2}}

so we substitute the values:

F_{AP}=(8.99x10^{9})\frac{(1C)(2C)}{43m^{2}}

which yields:

F_{AP}=418.14 MN

Now we can find its components:

F_{APx}=418.14 MN*\frac{3}{\sqrt{43}}i

F_{APx}=191.30 MNi

F_{APy}=418.14 MN*\frac{3}{\sqrt{43}}j

F_{APy}=191.30MN j

F_{APz}=418.14 MN*\frac{5}{\sqrt{43}}k

F_{APz}=318.83 MN k

And we can now write them together for the first force, so we get:

F_{AP}=(191.30i+191.30j+318.83k)MN

We continue with the next force. The procedure is the same so we get:

r_{BP}^{2}=(3-1)^{2}+(3-1)^{2}+(5+0)^{2}

which yields:

r_{BP}^{2}= 33 m^{2}

Next, we can make use of the force formula:

F_{BP}=(8.99x10^{9})\frac{(4C)(2C)}{33m^{2}}

which yields:

F_{BP}=2.18 GN

Now we can find its components:

F_{BPx}=2.18 GN*\frac{2}{\sqrt{33}}i

F_{BPx}=758.98 MNi

F_{BPy}=2.18 GN*\frac{2}{\sqrt{33}}j

F_{BPy}=758.98MN j

F_{BPz}=2.18 GN*\frac{5}{\sqrt{33}}k

F_{BPz}=1.897 GN k

And we can now write them together for the second, so we get:

F_{BP}=(758.98i + 758.98j + 1897k)MN

We continue with the next force. The procedure is the same so we get:

r_{CP}^{2}=(3-5)^{2}+(3-4)^{2}+(5-0)^{2}

which yields:

r_{CP}^{2}= 30 m^{2}

Next, we can make use of the force formula:

F_{CP}=(8.99x10^{9})\frac{(7C)(2C)}{30m^{2}}

which yields:

F_{CP}=4.20 GN

Now we can find its components:

F_{CPx}=4.20 GN*\frac{-2}{\sqrt{30}}i

F_{CPx}=-1.534 GNi

F_{CPy}=4.20 GN*\frac{2}{\sqrt{30}}j

F_{CPy}=-766.81 MN j

F_{CPz}=4.20 GN*\frac{5}{\sqrt{30}}k

F_{CPz}=3.83 GN k

And we can now write them together for the third force, so we get:

F_{CP}=(-1.534i - 0.76681j +3.83k)GN

So in order to find the resultant force, we need to add the forces together:

F_{r}=F_{AP}+F_{BP}+F_{CP}

so we get:

F_{r}=(191.30i+191.30j+318.83k)MN + (758.98i + 758.98j + 1897k)MN + (-1.534i - 0.76681j +3.83k)GN

So when adding the problem together we get that:

F_{r}=(-0.583.72i + 0.18347j +6.05k)GN

which is the answer to part a), now let's take a look at part b).

b)

Basically, we need to find the magnitude of the force and divide it into the test charge, so we get:

F_{r}=\sqrt{(-0.583.72)^{2} + (0.18347)^{2} +(6.05)^{2}}

which yields:

F_{r}=6.08 GN

and now we take the formula for the electric field which is:

E=\frac{F_{r}}{q}

so we go ahead and substitute:

E=\frac{6.08GN}{2C}

E=3.04\frac{GN}{C}

7 0
3 years ago
At constant pressure, the volume of a fixed mass of gas and its kelvin temperature are said to be
juin [17]
They are said to be directly related.

a) directly related.

This is Charles' Law.
3 0
3 years ago
Read 2 more answers
What is the effect on the force of gravity between two objects if the mass of one object remains unchanged while the distance to
Vadim26 [7]

Answer:

The correct answer to the question is

B. It always decreases

Explanation:

To solve the question, we note that the foce of gravity is given by

F_G=\frac{Gm_1m_2}{r^2} where

G= Gravitational constant

m₁ = mass of first object

m₂ = mass of second object

r = the distance between both objects

If the mass of one object remains unchanged while the distance to the second object and the second object’s mass are both doubled, we have

F_{G2} =\frac{Gm_1(2m_2)}{(2r)^2} = \frac{2}{4} \frac{Gm_1m_2}{r^2}

Therefore the gravitational force is halved. That is it will always decrease

4 0
3 years ago
To produce change in motion, a force must be a(n)
Bas_tet [7]
It'd be an unbalanced force
5 0
3 years ago
Other questions:
  • Which arrangement in relative size is correct? (&lt; sign means 'smaller than')
    12·2 answers
  • What is the longest possible wavelength for a line in the balmer series
    15·1 answer
  • If the skater coasts only around 65 degrees of the circle, find the magnitude of his displacement vector.
    15·1 answer
  • What quantity of heat is required to change 20g of ice at -25°c to steam at 120°c
    5·1 answer
  • Consider an electric dipole in a uniform electric field. In which orientation does the dipole-field system have the greatest pot
    12·1 answer
  • why people change their way of being They can be temporary or permanent changes. Other reasons why people change their attitudes
    9·1 answer
  • Please can you tell me any current topics in psychology for a project​
    12·2 answers
  • Lol 2 meter per seconds per seconds per seconds per seconds per seconds per seconds per seconds per seconds per seconds per seco
    12·2 answers
  • 7) A force of 500N exists between two identical point charges separated by a dis-
    8·2 answers
  • Pop up spring Lab
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!