Answer:

Explanation:
The two cars are under an uniform linear motion. So, the distance traveled by them is given by:

is the same for both cars when the second one catches up with the first. If we take as reference point the initial position of the second car, we have:

We have
. Thus, solving for t:

The third one sliding friction
Explanation:
Answer:
The minimum value of width for first minima is λ
The minimum value of width for 50 minima is 50λ
The minimum value of width for 1000 minima is 1000λ
Explanation:
Given that,
Wavelength = λ
For D to be small,
We need to calculate the minimum width
Using formula of minimum width


Where, D = width of slit
= wavelength
Put the value into the formula

Here,
should be maximum.
So. maximum value of
is 1
Put the value into the formula


(b). If the minimum number is 50
Then, the width is


(c). If the minimum number is 1000
Then, the width is


Hence, The minimum value of width for first minima is λ
The minimum value of width for 50 minima is 50λ
The minimum value of width for 1000 minima is 1000λ
Time = (distance) / (speed)
Time = (150 x 10⁹ m) / (3 x 10⁸ m/s) =
50 x 10¹ sec =
<em>500 sec</em> = 8 min 20 sec