Answer:
The moon does not have weather to erode the evidence of asteroid impacts.
The concept used to solve this problem is that given in the kinematic equations of motion. From theory we know that the change in velocities of a body is equivalent to twice the distance traveled by acceleration, in other words:

Where,
Final and initial velocity
a = Acceleration
x = Displacement
For the given case, the displacement is equivalent to the height (x = h) and the acceleration is the same gravitational acceleration (a = g). In turn we do not have initial speed therefore


Our values are given as


Replacing we have that,



Therefore the speed with which the liquid sulfur left the volcano is 529.15m/s
Answer:
hydrogen bridge
Explanation:
Joule's relationship to heat and temperature is true for all materials where we assume that interatomic forces are linear, when atoms separate these forces decrease. There is a point where the separation between atoms is enough that thermal agitation can separate the molecules and there is a change of state, generally from solid to liquid and from liquid to vapor. When these changes of state are occurring all the energy supplied is used to break the links, so the temperature does not change.
In the specific case of water, there is a bond called a hydrogen bridge that breaks around 4ºC, therefore, at this temperature there is a deviation from the curve since this link is being broken, this does not lead to a change of macroscopic state.
For the other temperatures the water behaves like the other bodies.
C. Insulator
It COULD be semi-insulator but i'm sure its C