Answer:
The speed of the ball when it hits the ground is 102.1 m/s
Explanation:
Given;
initial velocity of ball, u = 25 m/s
distance traveled by the ball = height of the building = h = 500 m
when the ball hits the ground, the final velocity, v = ?
The final velocity of the ball is given by;
v² = u² + 2gh
where;
g is acceleration due to gravity = 9.8 m/s²
v² = (25)² + 2(9.8)(500)
v² = 10425
v = √10425
v = 102.1 m/s
Therefore, the speed of the ball when it hits the ground is 102.1 m/s
Answer:
The initial speed of the block is 1.09 m/s
Explanation:
Given;
mass of block, m = 1.7 kg
force constant of the spring, k = 955 N/m
compression of the spring, x = 4.6 cm = 0.046 m
From principle of conservation of energy
kinetic energy of the block = elastic potential energy of the spring
¹/₂mv² = ¹/₂kx²
mv² = kx²

where;
v is the initial speed of the block
x is the compression of the spring

Therefore, the initial speed of the block is 1.09 m/s
Answer:

Explanation:
<u>Conservation of Momentum
</u>
The total momentum of a system of two particles is

Where m1,m2,v1, and v2 are the respective masses and velocities of the particles at a given time. Then, the two particles collide and change their velocities to v1' and v2'. The final momentum is now

The momentum is conserved if no external forces are acting on the system, thus

Let's put some numbers in the problem and say



120=120
It means that when the particles collide, the first mass returns at 6 m/s and the second continues in the same direction at 28 m/s
The same amount of work being done over a long period of time!
Answer:
0.5m/s2
Explanation:
acceleration= change in velocity/time taken
= v - u/ t
= 10-5/10
=5/10
= 0.5m/s2