Answer:
I won’t do it in paragraph form cuz it will look very choppy but here you go:
Weathering is when the weather itself changes something, like when a metal bike gets rusty after sitting outside for a long time, or when a plant grows out of concrete.
Erosion is when something gets eroded away at. Like when something has water or wind is flowing against it so much that it changes shape. This is how canyons are made.
Deposition is when a gas turns into a solid, removing energy and skipping the liquid step (frost forming on car window)
Answer:
ΔG = -52.9 kJ/mol
Explanation:
Step 1: Data given
Temperature = 298 K
All species have a partial pressure of 1 atm
Δ G ° = − 69.0 kJ/mol
Step 2: The balanced equation
N2(g) + 3H2(g) ⇆ 2NH3 (g)
Step 3: Calculate Q
we will use the expression: ΔG = ΔG° + RT*ln(Q)
⇒with Q = the reaction coordinate: Q = (PNH3)²/ ((PN2)*(Ph2)³) = 666.67
Step 4: Calculate ΔG
So, ΔG = -69.0 kJ/mol + (0.008314 kJ/mol*K)*(298 K)*ln(666.67) = -52.9 kJ/mol
(R = the gas constant = 8.314 J/mol* K OR 0.008314 kJ/mol*K)
40.6 kJ of heat energy had been emitted.
CO(g) + 2H2(g) CH3OH(l)CO volume, V (CO), equals 15 L or 0.015 m3.
Temperature = 85 0C = 85 + 273 = 358 K Pressure = 112 kPa = 112,000 PaPV = nRT n= 112000 0.015 / 8.314 358 n(CO) = 0.56 moles,
according to the ideal gas law.H2 volume is 14.4 L or 0.0144 m3
T = 750C + 273 K = 348 K n(H2) = 99191.84 0.0144 m3 / 8.314 348 K = 0.49 moles of H2 Pressure = 744 torr = 99191.84 Pa
Hydrogen is the limiting reagent, according to the calculation above.CH3OH = H2 = 0.49/2 = 0.245 m-238.6 (-110.5) = -128.1 kJ/mol for H(rxn) = H(f) (CH3OH) - H (rxn)
We must now multiply H(rxn) by the number of moles of methanol.
E = H(rxn) n(CH3OH) = 128.1 0.245 = 40.6 kJ.
Learn more about Ideal gas law here-
brainly.com/question/13821925
#SPJ4